Advertisement

Double active layer InZnO:N/InZnSnO thin film transistors with high mobility at low annealing temperature

  • Ye Wang
  • Jinbao Su
  • Shiqian Dai
  • Ran Li
  • Yaobin Ma
  • Qi Wang
  • Longjie Tian
  • Keqing Ning
  • Xiqing ZhangEmail author
Article
  • 36 Downloads

Abstract

In this paper, bottom-gate top-contact thin film transistors (TFTs) with a double active layer of InZnO:N/InZnSnO (IZO:N/IZTO) were successfully prepared. The IZO:N/IZTO thin films were deposited on SiO2/p-Si substrates by radio frequency (RF) magnetron sputtering at room temperature. The transmittance of both the IZO:N thin film and the IZTO thin film were more than 80% in the range of visible light. The IZO:N thin film and the IZTO thin film were found to be amorphous at the annealing temperature of 325 °C by means of X-ray diffraction (XRD). The double active layer IZO:N/IZTO TFT exhibited good electrical performance with a saturation mobility of 41.5 cm2 V−1 s−1, an on/off current ratio of 2.88 × 105, and a threshold voltage of 1.0 V, which achieved high mobility at the low annealing temperature of 325 °C.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51772019 and 51372016).

References

  1. 1.
    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012)CrossRefGoogle Scholar
  2. 2.
    K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J. Appl. Phys. 45(5S), 4303 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Gao, D.Z. Zhou, L.X. Yi, X.Q. Zhang, Y.S. Wang, Preparation and electrical characterization of Li-doped MgZnO thin-film transistors. J. Disp. Technol. 11(2), 149–151 (2015)CrossRefGoogle Scholar
  5. 5.
    C.H. Liang, J.L.H. Chau, C.C. Yang, H.H. Shih, Preparation of amorphous Ga–Sn–Zn–O semiconductor thin films by RF-sputtering method. Mater. Sci. Eng. B 183, 17–23 (2014)CrossRefGoogle Scholar
  6. 6.
    W.S. Liu, Y.M. Wang, Enhancing transparent thin-film transistor device performances by using a Ti-doped GaZnO channel layer. RSC Adv. 5(126), 104392–104399 (2015)CrossRefGoogle Scholar
  7. 7.
    S.H. Lee, D.J. Oh, A.Y. Hwang, J.W. Park, J.K. Jeong, High performance a-InZnSnO thin-film transistor with a self-diffusion-barrier formable copper contact. Thin Solid Films 637, 3–8 (2017)CrossRefGoogle Scholar
  8. 8.
    A.B. Cheremisin, S.N. Kuznetsov, G.B. Stefanovich, Bias-illumination stress effect in thin film transistors with a nitrogen low-doped IZO active layer. Semicond. Sci. Technol. 31(10), 105011 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Peng, H. Wang, W. Zhang, B. Li, D. Zhou, X. Zhang, Y. Wang, Fabrication and electrical characterization of InZnO: N thin film transistors prepared by radio frequency magnetron sputtering. J. Electron. Mater. 45(7), 3340–3342 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, R. Chen, B. Li, Y.F. En, Y.Q. Chen, Analysis of indium–zinc–oxide thin-film transistors under electrostatic discharge stress. IEEE Trans. Electron Devices 65(1), 356–360 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, H. He, R. Chen, Y.F. En, B. Li, Y.Q. Chen, Analysis and Simulation of Low-Frequency Noise in Indium-Zinc-Oxide Thin-Film Transistors. IEEE J. Electron Devices Soc. 6(1), 271–279 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Lee, B. Bierig, D.C. Paine, Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors. Thin Solid Films 520(10), 3764–3768 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.J. Im, S.J. Kim, J.H. Shin, S.S. Ha, C.H. Park, M. Yi, Improvement in the electrical performance of Ge-doped InZnO thin-film transistor. J. Nanosci. Nanotechnol. 15(10), 7537–7541 (2015)CrossRefGoogle Scholar
  14. 14.
    T. Kim, J.H. Hur, S. Jeon, Fast transient charging behavior of HfInZnO thin-film transistor. Appl. Phys. Lett. 107(9), 093503 (2015)CrossRefGoogle Scholar
  15. 15.
    J.C. Park, H.N. Lee, Improvement of the performance and stability of oxide semiconductor thin-film transistors using double-stacked active layers. IEEE Electron Device Lett. 33(6), 818 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Xie, G. Liu, L. Zhang, Y. Zhou, C. Dong, Amorphous oxide thin film transistors with nitrogen-doped hetero-structure channel layers. Appl. Sci. 7(10), 1099 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Goh, T. Kim, J.H. Yang et al. Defects and charge-trapping mechanisms of double-active-layer In–Zn–O and Al–Sn–Zn–In–O thin-film transistors. ACS Appl. Mater. Interfaces 9(11), 9271–9279 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Yu, N. Zhou, J. Smith et al., Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. ACS Appl. Mater. Interfaces 5(16), 7983–7988 (2013)CrossRefGoogle Scholar
  19. 19.
    N. Yamamoto, H. Makino, S. Osone et al., Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels. Thin Solid Films 520(12), 4131–4138 (2012)CrossRefGoogle Scholar
  20. 20.
    T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, … M. Kakegawa, Bottom-gate zinc oxide thin-film transistors (ZnO TFTs) for AM-LCDs. IEEE Trans. Electron Devices 55(11), 3136–3142 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Dai, T. Wang, R. Li et al., Preparation and effects of post-annealing temperature on the electrical characteristics of Li–N co-doped ZnSnO thin film transistors. Ceram. Int. 43(6), 4926–4929 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Ma, L. Tian, Q. Wang et al., Fabrication and electrical characteristics of Li-N co-doped InZnO TFTs prepared by radio frequency magnetron. J. Alloy. Compd. 702, 659–663 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Lim, N. Hwang, M. Yi, Effect of double-stacked active layer on stability of Si-IZO thin-film transistor. Microelectron. Eng. 178, 221–224 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ye Wang
    • 1
  • Jinbao Su
    • 1
  • Shiqian Dai
    • 1
  • Ran Li
    • 1
  • Yaobin Ma
    • 1
  • Qi Wang
    • 1
  • Longjie Tian
    • 1
  • Keqing Ning
    • 1
  • Xiqing Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic TechnologyBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations