Advertisement

Fabrication of CdS-decorated mesoporous SiC hollow nanofibers for efficient visible-light-driven photocatalytic hydrogen production

  • Yangwen Liu
  • Fengmei Gao
  • Lin Wang
  • Weiyou Yang
  • Xinbo HeEmail author
  • Huilin HouEmail author
Article
  • 38 Downloads

Abstract

In the present work, we reported the fabrication of CdS decorated mesoporous SiC hollow nanofibers for efficient visible-light-driven photocatalytic hydrogen production. The mesoporous SiC hollow nanofibers were firstly fabricated by electrospinning, followed by hydrothermal treatment to introduce the CdS nanoparticles decorated on the preformed fiber matrix, The resultant CdS/SiC hybrid photocatalysts were systematically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and N2 adsorption. The as-fabricated CdS/SiC hybrids exhibited a robust stability with a release rate up to ~ 124.65 µmol h−1 g−1 for photocatalytic H2 evolution driven by visible light, which was profoundly enhanced for more than 16 times to that of pristine SiC counterparts, and comparable to the state-of-the-art one of SiC-based photocatalysts.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC, Grant Nos. 51602163, 51572133, 51672137, and 51702175), Zhejiang Provincial Nature Science Foundation (Grant No. LQ17E020002), Natural Science Foundation of Ningbo Municipal Government (Grant Nos. 2016A610102, 2017A610002 and 2017A610005), Selected Foundation of Ningbo Lding and Top-notch Talents Training Project (Grant No. NBLJ201801007) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-10-003B).

References

  1. 1.
    M. Kubacka, G. Fermándezgarcia, Colón, Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2016)CrossRefGoogle Scholar
  2. 2.
    N.S. Lewis, Toward cost-effective solar energy use. Science 315, 16716–16719 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 136, 16716–16719 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ Sci. 11, 1362–1391 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Fang, Z. Li, Y. Jiang, X. Wang, H.Y. Chen, N. Tao, W. Wang, Intermittent photocatalytic activity of single CdS nanoparticles. Proc. Natl. Acad. Sci. USA 114, 10566–10571 (2017)CrossRefGoogle Scholar
  6. 6.
    Q. Han, F. Zhao, C. Hu, L. Lv, Z. Zhang, N. Chen, L. Qu, Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 8, 1718–1728 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Ou, P. Yang, L. Lin, M. Anpo, X. Wang, Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem. Int. Ed. Engl. 129, 10905–10910 (2017)CrossRefGoogle Scholar
  8. 8.
    N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T. Zhang, H. Huang, Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Deng, X. Lv, J. Gao, A. Pu, M. Li, X. Sun, J. Zhong, Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy Environ. Sci. 6, 1965–1970 (2013)CrossRefGoogle Scholar
  10. 10.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Chen, P. Ying, L. Wang, G. Wei, F. Gao, J. Zheng, M. Shang, Z. Yang, W. Yang, T. Wu, Highly flexible and robust N-doped SiC nanoneedle field emitters. NPG Asia Mater. 7, e157 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Gao, W. Feng, G. Wei, J. Zheng, M. Wang, W. Yang, Triangular prism-shaped p-type 6H-SiC nanowires. CrystEngComm 14, 488–491 (2011)CrossRefGoogle Scholar
  13. 13.
    F. Gao, J. Zheng, M. Wang, G. Wei, W. Yang, Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem. Commun. 47, 11993–11995 (2011)CrossRefGoogle Scholar
  14. 14.
    X.Y. Guo, G.Q. Jin, Pore-size control in the sol–gel synthesis of mesoporous silicon carbide. J. Mater. Sci. 40, 1301–1303 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Lin, L. Chengming, Y. Yang, C. Shanliang, G. Fengmei, W. Guodong, Y. Weiyou, Large-scale growth of well-aligned SiC tower-like nanowire arrays and their field emission properties. ACS Appl. Mater. Inter. 7, 526–533 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Wang, G. Wei, F. Gao, C. Li, W. Yang, High-temperature stable field emission of B-doped SiC nanoneedle arrays. Nanoscale 7, 7585–7592 (2015)CrossRefGoogle Scholar
  17. 17.
    L.L. Dong, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Synthesis and characterization of boron-doped SiC for visible light driven hydrogen production. Acta Phys-Chim. Sin. 30, 135–140 (2014)Google Scholar
  18. 18.
    J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int. J. Hydrog. Energy 37, 15038–15044 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Yang, X. Zeng, L. Chen, W. Yuan, Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 102, 083101–083104 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Gong, P.G. Jiang, Y.X. Wang, T. Wu, J.H. Lin, Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting. Int. J. Hydrog. Energy 38, 12733–12738 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Wang, J. Zhang, F. Huang, Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts. Appl. Surf. Sci. 391, 449–456 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, B. Liu, W. Yang, W. Jia, J. Li, C. Jiang, X. Jiang, 3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. Nanoscale 8, 17573–17580 (2016)CrossRefGoogle Scholar
  23. 23.
    J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal. Today 212, 220–224 (2013)CrossRefGoogle Scholar
  24. 24.
    T. Yang, X. Chang, J. Chen, K.C. Chou, X. Hou, B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 7, 8955–8961 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, S. Xie, D. Fang, Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 9, 886–898 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, H. Hou, X. He, W. Yang, Mesporous 3C-SiC hollow fibers. Sci. Rep. 7, 1890–1893 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Hou, F. Gao, G. Wei, M. Wang, J. Zheng, B. Tang, W. Yang, Electrospinning 3C-SiC mesoporous fibers with high purities and well-controlled structures. Cryst. Growth Des. 12, 536–539 (2012)CrossRefGoogle Scholar
  28. 28.
    S.H. Choi, D.Y. Youn, S.M. Jo, S.G. Oh, I.D. Kim, Micelle-mediated synthesis of single-crystalline β(3C)-SiC fibers via emulsion electrospinning. ACS Appl. Mater Inter. 3, 1385–1389 (2011)CrossRefGoogle Scholar
  29. 29.
    K.R. Carduner, S.S. Shinozaki, M.J. Rokosz, C.R. Peters, T.J. Whalen, Characterization of β-silicon carbide by silicon-29 solid-state NMR, transmission electron microscopy, and powder x-ray diffraction. J. Am. Ceram. Soc. 73, 2281–2286 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Lu, X. Cheng, G. Tian, H. Zhao, L. He, J. Hu, S.-M. Wu, Y. Dong, G.-G. Chang, S. Lenaerts, S. Siffert, G. Van Tendeloo, Z.F. Li, L.L. Xu, X.Y. Yang, B.L. Su, Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy 47, 8–17 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Peng, Z. Guo, J. Yang, D. Wang, W. Yuan, Enhanced photocatalytic H2 evolution over micro-SiC by coupling with CdS under visible light irradiation. J. Mater Chem. A 2, 6296–6300 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Nagakawa, T. Ochiai, M. Nagata, Fabrication of CdS/β-SiC/TiO2 tri-composites that exploit hole- and electron-transfer processes for photocatalytic hydrogen production under visible light. Int. J. Hydrog. Energy 43, 2207–2211 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity. Adv. Funct. Mater. 24, 3725–3733 (2014)CrossRefGoogle Scholar
  34. 34.
    F.X. Xiao, J. Miao, B. Liu, Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 136, 1559–1569 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie, X. Fang, Controlled growth from ZnS nanoparticles to ZnS-CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 25, 445–454 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Institute of MaterialsNingbo University of TechnologyNingboPeople’s Republic of China

Personalised recommendations