Advertisement

Facile controlled synthesis of MnO2 nanostructures for high-performance anodes in lithium-ion batteries

  • Lei LiuEmail author
  • Zhigang Shen
  • Xiaojing Zhang
  • Shulin Ma
Article
  • 16 Downloads

Abstract

At present, new electrode materials still need to be developed to enhance the energy density, cyclability, initial coulombic efficiency and rate capability of lithium-ion batteries (LIBs). Here, we report a simple, rapid, cost-effective and novel technology to prepare MnO2 through the decomposition of KMnO4 under different pH values without surfactants or high temperatures. Moreover, the formation mechanisms of curly MnO2 nanosheets, flower-like MnO2 and onion-like MnO2 are analyzed in depth. The great variation in the electrochemical performance of MnO2 prepared under different pH values clearly indicates the importance of the nanostructure. Furthermore, curly MnO2 nanoflakes fabricated at pH 2 (pH2-MnO2) show good initial coulombic efficiency (ca. 80%) and long cyclability (ca. 1038 mAh g−1 over 150 cycles), which is attributed to their relatively large surface area and stable structure.

Notes

Acknowledgements

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant Number 20131102110016); and the China Postdoctoral Science Foundation (Grant Number 157212).

Supplementary material

10854_2018_418_MOESM1_ESM.docx (1002 kb)
Supplementary material 1 (DOCX 1002 KB)

References

  1. 1.
    M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, New York, 2009)CrossRefGoogle Scholar
  2. 2.
    H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach, Mater. Today 17, 110 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Guerard, A. Herold, Carbon N Y 13, 337 (1975)CrossRefGoogle Scholar
  4. 4.
    S. Goriparti, E. Miele, F. De Angelis, E.Di Fabrizio, R.Proietti Zaccaria, C. Capiglia, J. Power Sources 257, 421 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Lou, J. Huang, T. Li, H. Hu, B. Hu, Y. Zhang, J. Mater. Sci. Mater. Electron 25, 1193 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Zhang, W. He, X. Zhang, X. Yang, J. Mater. Sci. Mater. Electron 26, 2189 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Deng, L. Wang, T. Hou, Y. Li, J. Phys. Chem. C 119, 28783 (2015)CrossRefGoogle Scholar
  8. 8.
    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)CrossRefGoogle Scholar
  9. 9.
    L.I.U. Ting-Ting, S. Guang-Jie, J.I. Ming-Tong, M.A. Zhi-Peng, Asian J. Chem. 25, 7065 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Bai, H. Zhou, X. Zhou, Q. Liao, S. Chen, J. Yang, J. Mater. Sci. 52, 11608 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Han, S. Xing, Z. Ma, Y. Wu, Y. Gao, J. Mater. Sci. 47, 3822 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Zahoor, H.S. Jang, J.S. Jeong, M. Christy, Y.J. Hwang, K.S. Nahm, RSC Adv. 4, 8973 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Zhou, L. Yu, M. Sun et al., Ind. Eng. Chem. Res. 52, 9586 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Chen, Y. Wang, X. He et al., Electrochim. Acta 142, 152 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Li, B. Xi, Y. Zhu, Q. Li, Y. Yan, Y. Qian, J. Alloys Compd. 509, 9542 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Jiang, Z.-J. Jiang, B. Chen et al., J. Mater. Chem. A 4, 2643 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Li, J. Wang, Y. Zhang et al., J. Colloid Interface Sci. 369, 123 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Shi, F. Wang, H. Dai et al., Appl. Catal. A 433–434, 206 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Zhao, Z. Tao, J. Liang, J. Chen, Cryst. Growth Des. 8, 2799 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Zhao, W. Ran, J. He et al., Small 11, 1310 (2015)CrossRefGoogle Scholar
  21. 21.
    D. He, X. He, K. Wang et al., Chem. Commun. 50, 11049 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Fei, N. Saha, N. Kazantseva, R. Moucka, Q. Cheng, P. Saha, Materials (Basel) 10, 1251 (2017)CrossRefGoogle Scholar
  23. 23.
    T.T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, ACS Nano 6, 8067 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Deng, V. Berry, Mater. Today 19, 197 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Liu, Z. Chen, C.-H. Shek, C.L. Wu, J.K. Lai, ACS Appl. Mater. Interfaces 6, 9776 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Zhao, P. Jiang, S.-S. Xie, J. Power Sources 239, 393 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Zhu, J. Luo, H. Yang et al., J. Phys. Chem. C 112, 17089 (2008)CrossRefGoogle Scholar
  28. 28.
    P. Xiong, R. Ma, N. Sakai, X. Bai, S. Li, T. Sasaki, ACS Appl. Mater. Interfaces 9, 6282 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Xia, M. Lai, L. Lu, J. Mater. Chem. 20, 6896 (2010)CrossRefGoogle Scholar
  30. 30.
    J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Carbon N Y 61, 190 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Huang, Y. Zhang, F. Li et al. 4, 4518 (2014)Google Scholar
  32. 32.
    J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon N Y 48, 3825 (2010)CrossRefGoogle Scholar
  33. 33.
    R.R. Salunkhe, H. Ahn, J.H. Kim, Y. Yamauchi, Nanotechnology 26, 204004 (2015)CrossRefGoogle Scholar
  34. 34.
    M.T. Greiner, L. Chai, M.G. Helander, W.-M. Tang, Z.-H. Lu, Adv. Funct. Mater. 22, 4557 (2012)CrossRefGoogle Scholar
  35. 35.
    K. Wen, G. Chen, F. Jiang, X. Zhou, J. Yang, Int. J. Electrochem. Sci. 10, 3859 (2015)Google Scholar
  36. 36.
    X. Fang, X. Lu, X. Guo et al., Electrochem. Commun. 12, 1520 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Sun, N. Huang, X. Sun et al., Int. J. Hydrogen Energy 42, 20016 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010)CrossRefGoogle Scholar
  39. 39.
    D.H. Olson, K.D. Shaughnessy, E.G. Langford et al., MRS Adv. 1, 3929 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Luo, J. Wu, J. Xu, V.P. Dravid, ACS Nano 8, 11560 (2014)CrossRefGoogle Scholar
  41. 41.
    X. Li, H. Song, H. Wang et al., J. Appl. Electrochem. 42, 1065 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Sun, Z. Chen, H.-S. Kim, H. Ahn, G. Wang, J. Power Sources 196, 3346 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, H. Liu, Z. Zhu et al., Electrochim. Acta 108, 465 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lei Liu
    • 1
    • 2
    Email author
  • Zhigang Shen
    • 1
    • 2
  • Xiaojing Zhang
    • 1
    • 2
  • Shulin Ma
    • 1
    • 2
  1. 1.Beijing Key Laboratory for Powder Technology Research & DevelopmentBeihang UniversityBeijingPeople’s Republic of China
  2. 2.School of Aerospace Science and EngineeringBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations