Advertisement

Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites

  • Kazi M. AlamEmail author
  • Piyush Kar
  • Ujwal K. Thakur
  • Ryan Kisslinger
  • Najia Mahdi
  • Arash Mohammadpour
  • Payal A. Baheti
  • Pawan Kumar
  • Karthik ShankarEmail author
Article
  • 67 Downloads

Abstract

Aqueous suspensions of cellulose nanocrystals were blended with Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) [PEDOT:PSS], and cast into thin films. The morphology, structure and electrical properties of the resulting nanocomposite thin films were thoroughly characterized. We found that the CNC–PEDOT:PSS blends self-organize into a layered vertical stack with a pitch of 100–200 nm while retaining a continuous percolation network for PEDOT. Atomic force microscopy, dynamic light scattering and multi-angle light scattering measurements confirmed the wrapping of polymer chains around the rod-like CNCs. The blended films exhibited improved molecular ordering of the PEDOT chains with concomitant improvement in the carrier mobility. The remarkable self-organization and enhanced structural order enabled the CNC–PEDOT:PSS blends to exhibit a high conductivity typical of PEDOT:PSS even when the content of the insulating CNCs in the nanocomposite was as high as 50 wt%.

Notes

Acknowledgements

This work was made possible by funding support from NSERC, Alberta Innovates, FPInnovations, CFI and NRC-NINT. We thank Dr. Wadood Hamad and his team at FPInnovations for constructive discussions and assistance with sample characterization. P. B. thanks MITACS Globalink while U.K.T. and A.M. thank Alberta Innovates for scholarship awards. Innotech Alberta is acknowledged for providing CNC samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_409_MOESM1_ESM.docx (6.1 mb)
Supplementary material 1 (DOCX 6220 KB)

References

  1. 1.
    Y.L. Habibi, A. Lucian, O.J. Rojas, Chem. Rev. 110, 3479 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Abitbol, A. Rivkin, Y. Cao et al., Curr. Opin. Biotechnol. 39, 76 (2016).  https://doi.org/10.1016/j.copbio.2016.01.002 CrossRefGoogle Scholar
  3. 3.
    J.P.F. Lagerwall, C. Schütz, M. Salajkova et al., NPG Asia Mater. 6, e80 (2014).  https://doi.org/10.1038/am.2013.69 CrossRefGoogle Scholar
  4. 4.
    N. Lin, A. Dufresne, Eur. Polym. J. 59, 302 (2014).  https://doi.org/10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
  5. 5.
    A. Sinha, E.M. Martin, K.-T. Lim et al., J. Biosyst. Eng. 40, 373 (2015).  https://doi.org/10.5307/jbe.2015.40.4.373 CrossRefGoogle Scholar
  6. 6.
    X. Wang, C. Yao, F. Wang, Z. Li (2017) Small.  https://doi.org/10.1002/smll.201702240 CrossRefGoogle Scholar
  7. 7.
    R. Sabo, A. Yermakov, C.T. Law, R. Elhajjar, J. Renew. Mater. 4, 297 (2016).  https://doi.org/10.7569/jrm.2016.634114 CrossRefGoogle Scholar
  8. 8.
    A.G. Dumanli, H.M. van der Kooij, G. Kamita et al., ACS Appl Mater. Interfaces 6, 12302 (2014).  https://doi.org/10.1021/am501995e CrossRefGoogle Scholar
  9. 9.
    X. Mu, D.G. Gray, Langmuir 30, 9256 (2014).  https://doi.org/10.1021/la501741r CrossRefGoogle Scholar
  10. 10.
    I. Usov, G. Nystrom, J. Adamcik et al., Nat. Commun. 6, 7564 (2015).  https://doi.org/10.1038/ncomms8564 CrossRefGoogle Scholar
  11. 11.
    Y. Zong, T. Zheng, P. Martins, S. Lanceros-Mendez, Z. Yue, M.J. Higgins, Nat. Commun. 8, 38 (2017).  https://doi.org/10.1038/s41467-017-00034-4 CrossRefGoogle Scholar
  12. 12.
    M. Mariano, N.El Kissi, A. Dufresne, J. Polym. Sci., Part B: Polym. Phys. 52, 791 (2014).  https://doi.org/10.1002/polb.23490 CrossRefGoogle Scholar
  13. 13.
    J. George, S.N. Sabapathi, Nanotechnol. Sci. Appl. 8, 45 (2015).  https://doi.org/10.2147/NSA.S64386 CrossRefGoogle Scholar
  14. 14.
    Z. Lian, W. Wang, G. Li, F. Tian, K.S. Schanze, H. Li, ACS Appl. Mater. Interfaces. 9, 16959 (2017).  https://doi.org/10.1021/acsami.6b11494 CrossRefGoogle Scholar
  15. 15.
    W. Kang, C. Yan, C.Y. Foo, P.S. Lee, Adv. Funct. Mater. 25, 4203 (2015).  https://doi.org/10.1002/adfm.201500527 CrossRefGoogle Scholar
  16. 16.
    S. Ji, B.G. Hyun, K. Kim et al., NPG Asia Mater. 8, e299 (2016).  https://doi.org/10.1038/am.2016.113 CrossRefGoogle Scholar
  17. 17.
    H. Zhu, Z. Fang, Z. Wang et al., ACS Nano 10, 1369 (2016).  https://doi.org/10.1021/acsnano.5b06781 CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, C. Fuentes-Hernandez, T.M. Khan et al., Sci. Rep. 3, 1536 (2013).  https://doi.org/10.1038/srep01536 CrossRefGoogle Scholar
  19. 19.
    Q. Zhang, W. Bao, A. Gong et al., Nanoscale 8, 14237 (2016).  https://doi.org/10.1039/c6nr01534d CrossRefGoogle Scholar
  20. 20.
    Y. Fujisaki, H. Koga, Y. Nakajima et al., Adv. Funct. Mater. 24, 1657 (2014).  https://doi.org/10.1002/adfm.201303024 CrossRefGoogle Scholar
  21. 21.
    D. Gaspar, S.N. Fernandes, A.G. de Oliveira et al., Nanotechnology 25, 094008 (2014).  https://doi.org/10.1088/0957-4484/25/9/094008 CrossRefGoogle Scholar
  22. 22.
    W. Wu, N.G. Tassi, H. Zhu, Z. Fang, L Hu, ACS Appl. Mater. Interfaces 7, 26860 (2015).  https://doi.org/10.1021/acsami.5b09249 CrossRefGoogle Scholar
  23. 23.
    S. Purandare, E.F. Gomez, A.J. Steckl, Nanotechnology 25, 094012 (2014).  https://doi.org/10.1088/0957-4484/25/9/094012 CrossRefGoogle Scholar
  24. 24.
    S. Yun, J. Kim, Z. Ounaies (2006) Smart. Mater. Struct. 15, N61.  https://doi.org/10.1088/0964-1726/15/3/n02 CrossRefGoogle Scholar
  25. 25.
    S. Yun, J. Kim, Smart Mater. Struct. 16, 1471 (2007).  https://doi.org/10.1088/0964-1726/16/4/062 CrossRefGoogle Scholar
  26. 26.
    H. Wang, H. Pang, D. Wei et al., J. Mater. Sci.: Mater. Electron. 29, 9829 (2018).  https://doi.org/10.1007/s10854-018-9023-2 CrossRefGoogle Scholar
  27. 27.
    D. Hao, B. Xu, Z. Cai, J. Mater. Sci.: Mater. Electron. 29, 9218 (2018).  https://doi.org/10.1007/s10854-018-8950-2 CrossRefGoogle Scholar
  28. 28.
    K. Karimi, E. Jabari, E. Toyserkani, P. Lee-Sullivan, J. Mater. Sci.: Mater. Electron. 29, 2537 (2018).  https://doi.org/10.1007/s10854-017-8176-8 CrossRefGoogle Scholar
  29. 29.
    K. Sun, S. Zhang, P. Li et al., J. Mater. Sci.: Mater. Electron. 26, 4438 (2015).  https://doi.org/10.1007/s10854-015-2895-5 CrossRefGoogle Scholar
  30. 30.
    E. Tkalya, M. Ghislandi, W. Thielemans, P. van der Schoot, G. de With, C. Koning, ACS Macro Lett. 2, 157 (2013).  https://doi.org/10.1021/mz300597j CrossRefGoogle Scholar
  31. 31.
    A. Dufresne, Mater. Today 16, 220 (2013).  https://doi.org/10.1016/j.mattod.2013.06.004 CrossRefGoogle Scholar
  32. 32.
    M.-C. Li, Q. Wu, K. Song, S. Lee, Y. Qing, Y. Wu, ACS Sustain. Chem. Eng. 3, 821 (2015).  https://doi.org/10.1021/acssuschemeng.5b00144 CrossRefGoogle Scholar
  33. 33.
    M.L. Hassan, C.M. Moorefield, H.S. Elbatal, G.R. Newkome, D.A. Modarelli, N.C. Romano, Mater. Sci. Eng. B 177, 350 (2012).  https://doi.org/10.1016/j.mseb.2011.12.043 CrossRefGoogle Scholar
  34. 34.
    L. Du, J. Wang, Y. Zhang, C. Qi, M.P. Wolcott, Z. Yu (2017) Nanomaterials (Basel).  https://doi.org/10.3390/nano7030051 CrossRefGoogle Scholar
  35. 35.
    F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Appl. Surf. Sci. 338, 163 (2015).  https://doi.org/10.1016/j.apsusc.2015.02.128 CrossRefGoogle Scholar
  36. 36.
    D. Yoo, J. Kim, J.H. Kim, Nano Res. 7, 717 (2014).  https://doi.org/10.1007/s12274-014-0433-z CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Y. Boluk, C. Danumah (2013) J. Nanopart. Res.  https://doi.org/10.1007/s11051-013-2174-4 CrossRefGoogle Scholar
  39. 39.
    E.E. Ureña-Benavides, C.L. Kitchens, (2012) RSC Adv. 2: 1096.  https://doi.org/10.1039/c1ra00391g CrossRefGoogle Scholar
  40. 40.
    S. Beck, J. Bouchard, R. Berry, Biomacromol 12, 167 (2011)CrossRefGoogle Scholar
  41. 41.
    V. Khoshkava, M.R. Kamal, Biomacromol 14, 3155 (2013).  https://doi.org/10.1021/bm400784j CrossRefGoogle Scholar
  42. 42.
    Z. Abas, H.S. Kim, J. Kim, J.-H. Kim (2014) Front. Mater.  https://doi.org/10.3389/fmats.2014.00017 CrossRefGoogle Scholar
  43. 43.
    W. Meng, R. Ge, Z. Li et al., ACS Appl. Mater. Interfaces 7, 14089 (2015).  https://doi.org/10.1021/acsami.5b03309 CrossRefGoogle Scholar
  44. 44.
    J. Luo, D. Billep, T. Waechtler et al., (2013) J. Mater. Chem. A.  https://doi.org/10.1039/c3ta11209h CrossRefGoogle Scholar
  45. 45.
    X. Xu, F. Liu, L. Jiang, J.Y. Zhu, D. Haagenson, D.P. Wiesenborn, ACS Appl. Mater Interfaces 5, 2999 (2013).  https://doi.org/10.1021/am302624t CrossRefGoogle Scholar
  46. 46.
    N. SM Gierlinger, A. Reinecke, I. Burgert (2006) Biomacromolecules 7, 2077CrossRefGoogle Scholar
  47. 47.
    A.E. Lewandowska, S.J. Eichhorn, J. Raman Spectrosc. 47, 1337 (2016).  https://doi.org/10.1002/jrs.4966 CrossRefGoogle Scholar
  48. 48.
    U.P. Agarwal, R. Sabo, R.S. Reiner, C.M. Clemons, A.W. Rudie, Appl. Spectrosc. 66, 750 (2012).  https://doi.org/10.1366/11-06563 CrossRefGoogle Scholar
  49. 49.
    P. GR, S.R.V.A. Kanwat, J. Jang, Mater. Res. Bull. 74, 346 (2016).  https://doi.org/10.1016/j.materresbull.2015.10.044 CrossRefGoogle Scholar
  50. 50.
    T.P. Nguyen, S.A. de Vos, Appl. Surf. Sci. 221, 330 (2004).  https://doi.org/10.1016/S0169-4332(03)00952-8 CrossRefGoogle Scholar
  51. 51.
    A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy (2012) J. Appl. Phys. 112.  https://doi.org/10.1063/1.4768265
  52. 52.
    W. Shi, Q. Yao, S. Qu, H. Chen, T. Zhang, L. Chen (2017) NPG Asia Mater. 9: e405.  https://doi.org/10.1038/am.2017.107 https://www.nature.com/articles/am2017107#supplementary-information
  53. 53.
    P. Veerender, V. Saxena, A.K. Chauhan et al., Sol. Energy Mater. Sol. Cells 120, 526 (2014).  https://doi.org/10.1016/j.solmat.2013.09.034 CrossRefGoogle Scholar
  54. 54.
    J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, Polymer 45, 8443 (2004).  https://doi.org/10.1016/j.polymer.2004.10.001 CrossRefGoogle Scholar
  55. 55.
    C.Sheng Hsiung, C. Chien-Hung, K. Feng-Sheng, T. Chuen-Lin, W. Chun-Guey, IEEE Photonics J. 6, 1 (2014).  https://doi.org/10.1109/jphot.2014.2331254 CrossRefGoogle Scholar
  56. 56.
    J. Hwang, I. Schwendeman, B.C. Ihas et al., (2011) Phys. Rev. B.  https://doi.org/10.1103/PhysRevB.83.195121 CrossRefGoogle Scholar
  57. 57.
    J. Saghaei, A. Fallahzadeh, T. Saghaei, Org. Electron. 24, 188 (2015).  https://doi.org/10.1016/j.orgel.2015.06.002 CrossRefGoogle Scholar
  58. 58.
    X. Crispin, F.L.E. Jakobsson, A. Crispin et al., (2006) Chem. Mater. 18, 4354.  https://doi.org/10.1021/cm061032&%23x002B; CrossRefGoogle Scholar
  59. 59.
    P.-W. Sze, K.-W. Lee, P.-C. Huang, D.-W. Chou, B.-S. Kao, C.-J. Huang, Energies 10, 716 (2017)CrossRefGoogle Scholar
  60. 60.
    J.E. McCarthy, C.A. Hanley, L.J. Brennan, V.G. Lambertini, Y.K. Gun’ko, J. Mater. Chem. C 2, 764 (2014).  https://doi.org/10.1039/C3TC31951B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kazi M. Alam
    • 1
    Email author
  • Piyush Kar
    • 1
  • Ujwal K. Thakur
    • 1
  • Ryan Kisslinger
    • 1
  • Najia Mahdi
    • 1
  • Arash Mohammadpour
    • 1
  • Payal A. Baheti
    • 1
    • 3
  • Pawan Kumar
    • 1
  • Karthik Shankar
    • 1
    • 2
    Email author
  1. 1.Department of Electrical & Computer EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.National Research Council National Institute for NanotechnologyEdmontonCanada
  3. 3.Department of Applied ChemistrySardar Vallabhbhai National Institute of Technology (SVNIT)SuratIndia

Personalised recommendations