Substrate temperature dependent variation in the properties of cadmium telluride thin films deposited on glass

  • Saloni Goyal
  • R. P. ChauhanEmail author


The present study relates to the variation in properties of cadmium telluride (CdTe) thin films deposited via electron beam and thermal vacuum evaporation methods at two different substrate temperatures. The influence of substrate temperature on structural, morphological, optical and electrical properties of CdTe thin films is investigated. For structural characterization, grazing incidence X-ray diffraction technique is used which revealed that thin films deposited at 200 °C temperature are more crystalline in nature as compare to the room temperature. The parameters such as average crystallite size (D), lattice strain (ε), number of crystallites per unit area (N) and texture coefficient TC (hkl) were calculated for both types of synthesized CdTe thin films. Surface morphology of thin films was recorded using scanning electron microscopy and found to be homogeneous in nature. The optical studies carried out using UV–Visible Spectrophotometer and Photoluminescence shown a decrease in band gap values for both electron beam and thermally deposited thin films samples at 200 °C substrate temperature. Electrical measurements recorded using two probes method showed the maximum value of current for CdTe thin films deposited by electron beam evaporation method at 200 °C substrate temperature.



The authors are thankful to the Material Research Center, Malaviya National Institute of Technology, Jaipur for providing both deposition technique and characterization facilities (G-XRD). Authors also acknowledge Director NIT Kurukshetra, India for providing SEM, UV–Visible spectrophotometer, Photoluminescence (PL) and I–V characteristics measurement facilities and the financial support.


  1. 1.
    G. Zha, H. Zhou, J. Gao, T. Wang, W. Jie, Vacuum 86(3), 242–245 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Lie, W. Jie, J. Cryst. Growth 257(1–2), 110–115 (2003)CrossRefGoogle Scholar
  3. 3.
    E. Roduner, Chem. Soc. Rev. 35(7), 583 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Venkatachalam, D. Mangalaraj, Sa.K. Narayandass, Physica B 393(1–2), 47–55 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Romeo, D.L. Batzner, H. Zogg, C. Vignali, A.N. Tiwari, Sol. Energy Mater Sol. Cells 67, 311–321 (2001)CrossRefGoogle Scholar
  6. 6.
    J.V. Gheluwe, J. Versluys, D. Poelman, P. Clauws, Thin Solid Films 480–481, 264–268 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Kang, E.I. Parasai, D. Albin, V.G. Karpov, D. Shvydka, App. Phys. Lett. 93, 223507 (2008)CrossRefGoogle Scholar
  8. 8.
    M.A. Islam, K.S. Rahman, K. Sobayel, T. Enam, A.M. Ali, M. Zaman, M. Akhtaruzzaman, Sol. Energy Mater Sol. Cells 172, 384–393 (2017)CrossRefGoogle Scholar
  9. 9.
    M.F. Hasaneen, W.S. Mohamed, Optik 160, 307–321 (2018)CrossRefGoogle Scholar
  10. 10.
    S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, M.G. Takwale, K.C. Mohite, Sol. Energy 106, 56–62 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Chander, M.S. Dhaka, Mater. Lett. 182, 98–101 (2016)CrossRefGoogle Scholar
  12. 12.
    S.G. Kumar, K.S.R.K. Rao, Energy Environ. Sci. 7, 45–102 (2014)CrossRefGoogle Scholar
  13. 13.
    P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Mater. Sci. Semicond. Process. 58, 51–60 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, J. Sci. 3(1), 86–98 (2018)Google Scholar
  15. 15.
    A. Purohit, S. Chander, M.S. Dhaka, Opt. Mater. 66, 512–518 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Sol. Energy Mater. Sol. Cells 82(1–2), 187–199 (2004)CrossRefGoogle Scholar
  17. 17.
    E. Bacaksiz, B.M. Basol, M. Altunbaş, V. Novruzov, E. Yanmaz, S. Nezir, Thin Solid Films 515(5), 3079–3084 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Chander, M.S. Dhaka, Mater. Sci. Semicond. Process. 40, 708–712 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Chander, A. Purohit, C. Lal, M.S. Dhaka, Mater. Chem. Phys. 185, 202–209 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Chander, M.S. Dhaka, Thin Solid Films 625, 131–137 (2017)CrossRefGoogle Scholar
  21. 21.
    M.R. Begam, N.M. Rao, S. Kaleemulla, M. Shobana, N.S. Krishna, M. Kuppan, J. Nano-Electron. Phys. 5(3), 03019 (2013)Google Scholar
  22. 22.
    N.J. Suthan Kissinger, J. Suthagar, B. Saravana Kumar, T. Balasubramaniam, K. Perumal, Acta Phys. Pol. A 118(4), 623–628 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Mathuri, K. Ramamurthi, R.R. Babu, Thin Solid Films 625, 138–147 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Appl. Surf. Sci. 344, 89–100 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003), pp. 458–459CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and TechnologyNational Institute of TechnologyKurukshetraIndia
  2. 2.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations