Flexible, biodegradable and recyclable solar cells: a review

  • Kishor Kumar Sadasivuni
  • Kalim Deshmukh
  • T. N. Ahipa
  • Aqib Muzaffar
  • M. Basheer Ahamed
  • S. K. Khadheer Pasha
  • Mariam Al-Ali Al-Maadeed


Solar energy is conceivably the largest source of renewable energy at our disposal, but vital advances are expected to make solar cells economically viable. Biodegradable and flexible solar cells are currently under extensive investigation for environmentally-friendly electronic applications. Biomaterials based solar cell is emerging due to their sustainable, scalable, abundant, renewable, and environmentally-friendly energy production. This review highlights recent research progress in the emerging group of biomaterials and their integration for flexible solar cell devices. The more emphasis is given to the absolute recyclable solar cell technology, processing conditions and optimized processing conditions to produce a high amount of energy. This review briefly describes the recent progress in these classes of material, covering substrates and semiconductors. A prominent demand still exists for a next-generation of flexible, biodegradable and biocompatible solar cell substrate for ultimate energy generation application.



This publication was made possible by the support of an UREP grant from the Qatar National Research Fund (UREP23-116-2-041). The statements made herein are solely the responsibility of the authors. Dr. Ahipa T. N. is grateful to the Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Kanakapura Taluk, Ramanagara-562112, India for providing necessary facilities. This research was supported by the Science & Engineering Research Board (SERB) (Project File No.: YSS/2014/000835) under Young Scientists Scheme, Govt. of India, New Delhi.


  1. 1.
    Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Sci. Rep. 3, 1536 (2013)CrossRefGoogle Scholar
  2. 2.
    M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications, (Prentice-Hall, Inc., Englewood Cliffs, 1982)Google Scholar
  3. 3.
    R.C. Neville, Solar Energy Conversation: The Solar Cells (Elsevier, Amsterdam, 1978)Google Scholar
  4. 4.
    G.A. Chamberlain, Sol. Cells. 8, 47–83 (1983)CrossRefGoogle Scholar
  5. 5.
    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, In: 37th IEEE Photovoltaic Specialists Conference, (2011), pp. 4–8Google Scholar
  6. 6.
    E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Appl. Phys. Lett. 51, 2222–2224 (1987)CrossRefGoogle Scholar
  7. 7.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)CrossRefGoogle Scholar
  8. 8.
    S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841–843 (2001)CrossRefGoogle Scholar
  9. 9.
    M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt. 9, 287–293 (2001)CrossRefGoogle Scholar
  10. 10.
    N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54, 17628–17637 (1996)CrossRefGoogle Scholar
  11. 11.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. AlMaadeed, A.R. Polu, K. Chidambaram, J. Electron. Mater. 46, 2406–2418 (2017)CrossRefGoogle Scholar
  12. 12.
    K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, A.M. Trimukhe, S.K.K. Pasha, A.R. Polu, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 24, 27 (2017)CrossRefGoogle Scholar
  15. 15.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1995)CrossRefGoogle Scholar
  16. 16.
    L.S. Roman, M.R. Andersson, T. Yohannes, O. Inganás, Adv. Mater. 9, 1164–1168 (1997)CrossRefGoogle Scholar
  17. 17.
    J.J. Dittmer, E.A. Marseglia, R.H. Friend, Adv. Mater. 12, 1270–1274 (2000)CrossRefGoogle Scholar
  18. 18.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, S.K.K. Pasha, R.R. Deshmukh, K. Chidambaram, Mater. Chem. Phys. 186, 188–201 (2017)CrossRefGoogle Scholar
  19. 19.
    P.M. Borsenberger, W.T. Gruenbaum, M.B. O’Regan, L.J. Rossi, J. Polym. Sci. B 33, 2143–2149 (1995)CrossRefGoogle Scholar
  20. 20.
    D.S. Ginger, N.C. Greenham, Phys. Rev. B 59, 10622–10629 (1999)CrossRefGoogle Scholar
  21. 21.
    J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Grätzel, J. Phys. Chem. 100, 9577–9578 (1996)CrossRefGoogle Scholar
  22. 22.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, J. Mater. Sci. 28, 559–575 (2017)Google Scholar
  23. 23.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, J. Appl. Polym. Sci. 134, 44427 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153–161 (2012)CrossRefGoogle Scholar
  25. 25.
    M.J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G.G. Wallace, D.L. Officer, A. Furube, R. Katoh, S. Mori, A.J. Mozer, Chem Commun. 48, 4145–4162 (2012)CrossRefGoogle Scholar
  26. 26.
    C.W. Tang, Appl. Phys. Lett. 48, 183–185 (1986)CrossRefGoogle Scholar
  27. 27.
    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474–1476 (1992)CrossRefGoogle Scholar
  28. 28.
    M. Hiramoto, H. Fujiwara, M. Yokoyama, J. Appl. Phys. 72, 3781–3787 (1992)CrossRefGoogle Scholar
  29. 29.
    M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 805–813 (2008)CrossRefGoogle Scholar
  30. 30.
    C.J. Brabec, Sol. Energy Mater. Sol. Cells 83, 273–292 (2004)CrossRefGoogle Scholar
  31. 31.
    F.C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Sol. Energy Mater. Sol. Cells 83, 293–300 (2004)CrossRefGoogle Scholar
  32. 32.
    M.K. Mohanapriya, K. Deshmukh, B. Ahamed, K. Chidambaram, S.K.K. Pasha, Adv. Mater. Lett. 7, 996–1002 (2016)CrossRefGoogle Scholar
  33. 33.
    R.E. Chapin, M.W. Harris, E.S. Hunter, B.J. Davis, B.J. Collins, A.C. Lockhart, Fundam. Appl. Toxicol. 27, 140–148 (1995)CrossRefGoogle Scholar
  34. 34.
    A. Boughriet, N. Proix, G. Billon, P. Recourt, B. Ouddane, Water Air Soil Pollut. 180, 83–95 (2007)CrossRefGoogle Scholar
  35. 35.
    Z. Tong, M. Bischoff, L. Nies, B. Applegate, R.F. Turco, Environ. Sci. Technol. 41, 2985–2991 (2007)CrossRefGoogle Scholar
  36. 36.
    Y.B. Cheng, A. Pascoe, F. Huang, Y. Peng, Nature 539, 488–489 (2016)CrossRefGoogle Scholar
  37. 37.
    F. Wang, Z. Chen, L. Xiao, B. Qu, Q. Gong, Sol. Energy Mater. Sol. Cells 94, 1270–1274 (2010)CrossRefGoogle Scholar
  38. 38.
    T.S. Kim, S.I. Na, S.S. Kim, B.K. Yu, J.S. Yeo, D.Y. Kim, Phys. Status Solidi RRL 6, 13–15 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 1, 1018–1022 (2011)CrossRefGoogle Scholar
  40. 40.
    J. Vartiainen, T. Pöhler, K. Sirola, L. Pylkkänen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, A. Laukkanen, Cellulose 18, 775–786 (2011)CrossRefGoogle Scholar
  41. 41.
    N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Carbohydr. Polym. 90, 735–764 (2012)CrossRefGoogle Scholar
  42. 42.
    H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, L. Chen, J. Mater. Chem. A 1, 3938–3944 (2013)CrossRefGoogle Scholar
  43. 43.
    S. Berson, R.D. Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 17, 1377–1384 (2007)CrossRefGoogle Scholar
  44. 44.
    S.J. Lee, Y.H. Kim, J.K. Kim, H. Baik, J.H. Park, J. Lee, J. Nam, J.H. Park, T.W. Lee, G.R. Yi, J.H. Cho, Nanoscale 6, 11828–11834 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Pagliaro, R. Ciriminna, G. Palmisano, Chem Sus Chem. 1, 880–891 (2008)CrossRefGoogle Scholar
  46. 46.
    D. Pola, A. Chianese, Bernasconi, Sol. Energy 81, 1144–1158 (2007)CrossRefGoogle Scholar
  47. 47.
    H. Park, Y. Jun, H.G. Yun, S.Y. Lee, M.G. Kang, J. Electrochem. Soc. 155, F145–F149 (2008)CrossRefGoogle Scholar
  48. 48.
    T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Sol. Energy Mater. Sol. Cells 94, 812–816 (2010)CrossRefGoogle Scholar
  49. 49.
    T. Miyasaka, M. Ikegami, Y. Kijitori, J. Electrochem. Soc. 154, A455–A461 (2007)CrossRefGoogle Scholar
  50. 50.
    S. Ito, N.L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, Chem. Commun. 2006, 4004–4006 (2006)CrossRefGoogle Scholar
  51. 51.
    M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Nat. Mater. 4, 607–611 (2005)CrossRefGoogle Scholar
  52. 52.
    T.N. Murakami, K. Yujiro, K. Norimichi, M. Tsutomu, Chem. Lett. 32, 1076–1077 (2003)CrossRefGoogle Scholar
  53. 53.
    H. Pan, S.H. Ko, N. Misra, C.P. Grigoropoulos, Appl. Phys. Lett. 94, 071117 (2009)CrossRefGoogle Scholar
  54. 54.
    D. Zhang, T. Yoshida, K. Furuta, H. Minoura, J. Photochem. Photobiol. A 164, 159–166 (2004)CrossRefGoogle Scholar
  55. 55.
    H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, J. Photochem. Photobiol. A 145, 107–112 (2001)CrossRefGoogle Scholar
  56. 56.
    W. Cai, X. Gong, Y. Cao, Sol. Energy Mater. Sol. Cells 94, 114–127 (2010)CrossRefGoogle Scholar
  57. 57.
    M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87, 083506 (2005)CrossRefGoogle Scholar
  58. 58.
    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158 (2008)CrossRefGoogle Scholar
  59. 59.
    G. Hashmi, K. Miettunen, T. Peltola, J. Halme, I. Asghar, K. Aitola, M. Toivola, P. Lund, J. Renew. Sustain. Energy Rev. 15, 3717–3732 (2011)CrossRefGoogle Scholar
  60. 60.
    T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C.J. Brabec, Adv. Funct. Mater. 15, 1193–1196 (2005)CrossRefGoogle Scholar
  61. 61.
    F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Sol. Energy Mater. Sol. Cells 93, 422–441 (2009)CrossRefGoogle Scholar
  62. 62.
    J. Liu, E.N. Kadnikova, Y. Liu, M.D. McGehee, J.M. J. Fréchet, J. Am. Chem. Soc. 126, 9486–9487 (2004)CrossRefGoogle Scholar
  63. 63.
    T. Nielsen, K. Bechgaard, F.C. Krebs, Macromolecules 38, 658–659 (2005)CrossRefGoogle Scholar
  64. 64.
    H. Wolf, Rauschenbach, Adv. Energy Convers. 3, 455–479 (1963)CrossRefGoogle Scholar
  65. 65.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394–412 (2009)CrossRefGoogle Scholar
  66. 66.
    O. Jørgensen, J. Hagemann, F.C. Alstrup, Krebs, Sol. Energy Mater. Sol. Cells 93, 413–421 (2009)CrossRefGoogle Scholar
  67. 67.
    J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Nat. Mater. 6, 497–500 (2007)CrossRefGoogle Scholar
  68. 68.
    W.M. Keogh, A.W. Blakers, Accurate Performance Measurement of Silicon Solar Cells, (Australian National University Research Publications, Canberra, 2018) pp. 1–200Google Scholar
  69. 69.
    K.A. Emergy, C.R. Osterwald, PV performance measurement algorithms procedures and equipment. IEEE Conf. Photovolt. Spec. 1062, 1068–1073 (1990)CrossRefGoogle Scholar
  70. 70.
    I. Santiago, D. Trillo-Montero, I.M. Moreno-Garcia, V. Pallarés-López, J.J. Luna-Rodríguez, Renew. Sustain. Energy Rev. 90, 70–89 (2018)CrossRefGoogle Scholar
  71. 71.
    M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4, 96–99 (2014)CrossRefGoogle Scholar
  72. 72.
    T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Sol. Energ. Mater. Sol. Cells 95, 18–21 (2011)CrossRefGoogle Scholar
  73. 73.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)CrossRefGoogle Scholar
  74. 74.
  75. 75.
    A. Freundlich, A. Alemu, Physica Status Solidi C 2, 2978–2981 (2005)CrossRefGoogle Scholar
  76. 76.
    A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, Nat. Mater. 10, 857 (2011)CrossRefGoogle Scholar
  77. 77.
    L. You, K. Dou, T. Yoshimura, K. Kato, T. Ohya, K. Moriarty, C.C. Emery, J. Chen, G. Gao, Y. Li, Yang, Nat. Commun. 4, 1446 (2013)CrossRefGoogle Scholar
  78. 78.
    A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S.W. Glunz, Prog. Photovolt. Res. Appl. 15, 493–505 (2007)CrossRefGoogle Scholar
  79. 79.
    R. McIntosh, C.B. Honsberg, The influence of edge recombination on a solar cell’s IV curve, In: Proc. 16th PVSEC, Glasgow, (2000) pp. 1651–1654Google Scholar
  80. 80.
  81. 81.
    J. Schmidt, M. Kerr, P.P. Altermatt, J. Appl. Phys. 88, 1494–1497 (2000)CrossRefGoogle Scholar
  82. 82.
    J. Kerr, A. Cuevas, R.A. Sinton, J. Appl. Phys. 91, 399–404 (2002)CrossRefGoogle Scholar
  83. 83.
    A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 86, 165202 (2012)CrossRefGoogle Scholar
  84. 84.
    B. Sproul, J. Appl. Phys. 76, 2851–2854 (1994)CrossRefGoogle Scholar
  85. 85.
    K.L. Luke, L.J. Cheng, J. Appl. Phys. 61, 2282–2293 (1987)CrossRefGoogle Scholar
  86. 86.
    A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, D. Salzman, Prog. Photovolt. Res. Appl. 17, 75–83 (2009)CrossRefGoogle Scholar
  87. 87.
    A. Cuevas, D. Macdonald, Sol. Energy 76, 255–262 (2004)CrossRefGoogle Scholar
  88. 88.
    H. Nagel, C. Berge, A.G. Aberle, J. Appl. Phys. 86, 6218–6221 (1999)CrossRefGoogle Scholar
  89. 89.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A.D. Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Nature 397, 121–128 (1999)CrossRefGoogle Scholar
  90. 90.
    A. Kraft, Plated Copper Front Side Metallization on Printed Seed-layers for Silicon Solar Cells, (Fraunhofer Verlag, Stuttgart, 2015)Google Scholar
  91. 91.
    R. Corkish, K. Luke, P. Altermatt, G. Heiser, Simulating electron-beam-induced current profiles across p-n junctions, In: 16th European Solar Energy Conference (2000) pp. 1590–1593Google Scholar
  92. 92.
    F.M. Smits, Bell Syst. Technol. J. 37, 711–718 (1958)CrossRefGoogle Scholar
  93. 93.
    F.P. Dale, Smith, J. Appl. Phys. 32, 1377–1381 (1961)CrossRefGoogle Scholar
  94. 94.
    L. Gostein, Dunn, Light soaking effects on photovoltaic modules; overview and literature review. Overview and literature review. In Photovoltaic Specialists Conference (PVSC), 37th IEEE, (2011), pp. 003126–003131Google Scholar
  95. 95.
    A.A. Shruti, V.D. Vivek, M. Subas, B.O. Satishchandra, RSC Adv. 2, 11645–11649 (2012)CrossRefGoogle Scholar
  96. 96.
    G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y.J. Shin, Adv. Mater. 17, 2349–2353 (2005)CrossRefGoogle Scholar
  97. 97.
    S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, J. Photochem. Photobiol. A 164, 93–96 (2004)CrossRefGoogle Scholar
  98. 98.
    R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631–2645 (1998)CrossRefGoogle Scholar
  99. 99.
    R. Goebbert, M.A. Nonninger, H. Aegerter, Schmidt, Thin Solid Films 351, 79–84 (1999)CrossRefGoogle Scholar
  100. 100.
    K. Zeng, F. Zhu, J. Hu, L. Shen, K. Zhang, H. Gong, Thin solid films 443, 60–65 (2003)CrossRefGoogle Scholar
  101. 101.
    J.G. Doh, J.S. Hong, R. Vittal, M.G. Kang, N.G. Park, K.J. Kim, Chem. Mater. 16, 493–497 (2004)CrossRefGoogle Scholar
  102. 102.
    T. Karasawa, Y. Miyata, Thin Solid Films 223, 79–84 (1993)CrossRefGoogle Scholar
  103. 103.
    J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, C.M. Chang, Appl. Phys. Lett. 72, 3317–3319 (1998)CrossRefGoogle Scholar
  104. 104.
    S. Major, K.L. Chopra, Sol. Energy Mater. 17, 319–327 (1988)CrossRefGoogle Scholar
  105. 105.
    O. Akinwunmi, M.A. Eleruja, J.O. Olowolafe, G.A. Adeqboyega, E.O.B. Ajayi, Opt. Mater. 13, 255–259 (1999)CrossRefGoogle Scholar
  106. 106.
    C. Liu, T. Matsutani, N. Yamamoto, M. Kiuchi, Europhys. Lett. 59, 606–611 (2002)CrossRefGoogle Scholar
  107. 107.
    S. Ngamsinlapasathian, A. Kitiyanan, T. Fujieda, S. Yoshikawa, ECS Trans. 1, 7–15 (2006)CrossRefGoogle Scholar
  108. 108.
    A. Katz, S. Gevorgyan, M.S. Orynbayev, F.C. Krebs, Eur. Phys. J. Appl. Phys. 36, 307–311 (2007)CrossRefGoogle Scholar
  109. 109.
    J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Energy Environ. Sci. 10, 337–345 (2017)CrossRefGoogle Scholar
  110. 110.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)CrossRefGoogle Scholar
  111. 111.
    J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin, T.A. Sato, Adv. Funct. Mater. 17, 2645–2652 (2007)CrossRefGoogle Scholar
  112. 112.
    A.F. Nogueira, C. Longo, M.A. De Paoli, Coord. Chem. Rev. 248, 1455–1468 (2004)CrossRefGoogle Scholar
  113. 113.
    Y. Wang, Sol. Energy Mater. Sol. Cells 93, 1167–1175 (2009)CrossRefGoogle Scholar
  114. 114.
    A.F. Nogueira, M.A. De Paoli, Sol. Energy Mater. Sol. Cells 61, 135–141 (2000)CrossRefGoogle Scholar
  115. 115.
    F. Nogueira, J.R. Durrant, M.A. De Paoli, Adv. Mater. 13, 826–830 (2001)CrossRefGoogle Scholar
  116. 116.
    T. Stergiopoulos, I.M. Arabatzis, M. Kalbac, I. Lukes, P. Falaras, J. Mater. Process. Technol. 161, 107–112 (2005)CrossRefGoogle Scholar
  117. 117.
    T. Stergiopoulos, I.M. Arabatzis, H. Cachet, P.J. Falaras, J. Photochem. Photobiol. A 155, 163–170 (2003)CrossRefGoogle Scholar
  118. 118.
    A. Vicente, H. Águas, T. Mateus, A. Araújo, A. Lyubchyk, S. Siitonen, E. Fortunato, R. Martins, J. Mat. Chem. A 3, 13226–13236 (2015)CrossRefGoogle Scholar
  119. 119.
    V.R. Voggu, J. Sham, S. Pfeffer, J. Pate, L. Fillip, T.B. Harvey, R.M. Brown Jr., B.A. Korgel, ACS Energy Lett. 2, 574–581 (2017)CrossRefGoogle Scholar
  120. 120.
    D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973)CrossRefGoogle Scholar
  121. 121.
    A.T. Vicente, A. Araújo, M.J. Mendes, D. Nunes, M.J. Oliveira, O. Sanchez-Sobrado, M.P. Ferreira, H. Águas, E. Fortunato, R. Martins, J. Mater. Chem. C 6, 3143–3181 (2018)CrossRefGoogle Scholar
  122. 122.
    R. Martins, I. Ferreira, E. Fortunato, Physica Status Solidi RRL 5, 332–335 (2011)CrossRefGoogle Scholar
  123. 123.
    A. Vincent, Prog. Solid State Chem. 17, 145–261 (1987)CrossRefGoogle Scholar
  124. 124.
    J.N. De Freitas, J.E. Benedetti, F.S. Freitas, A.F. Nogueira, M.A. De Paoli, Polymer electrolytes for dye-sensitized solar cells, In Polymer Electrolytes: Fundamentals and Applications, edited by C. Sequeira, D. Santos (Woodhead Publishing Ltd, Cambridge, 2010), p. 387Google Scholar
  125. 125.
    M.H. Khanmirzaei, S. Ramesh, K. Ramesh, Mater. Des. 85, 833–837 (2015)CrossRefGoogle Scholar
  126. 126.
    Y. Yang, J. Cui, P. Yi, X. Zheng, X. Guo, W. Wang, J. Power Sources 248, 988–993 (2014)CrossRefGoogle Scholar
  127. 127.
    H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Adv. Funct. Mater. 25, 3592–3598 (2015)CrossRefGoogle Scholar
  128. 128.
    M. Smeets, K. Wilken, K. Bittkau, H. Aguas, L. Pereira, E. Fortunato, R. Martins, V. Smirnov, Physica Status Solidi A 214, 1700070 (2017)CrossRefGoogle Scholar
  129. 129.
    J. Shi, S. Peng, J. Pei, Y. Liang, F. Cheng, J. Chen, ACS Appl. Mater. Interfaces 1, 944–950 (2009)CrossRefGoogle Scholar
  130. 130.
    Y. Saito, H. Kataoka, C. Capiglia, H. Yamamoto, J. Phys. Chem. B 104, 2189–2192 (2000)CrossRefGoogle Scholar
  131. 131.
    S.N.F. Yusuf, M.F. Aziz, H.C. Hassan, T.M.W.J. Bandara, B.E. Mellander, M.A. Careem, A.K. Arof, J. Chem. 2014, 783023 (2014)CrossRefGoogle Scholar
  132. 132.
    Y. Yang, H. Hu, C.H. Zhou, S. Xu, B. Sebo, X.Z. Zhao, J. Power Sources 196, 2410–2415 (2011)CrossRefGoogle Scholar
  133. 133.
    O. Avellaneda, A.D. Goncalves, J.E. Benedetti, A.F. Nogueira, Electrochim. Acta 55, 1468–1474 (2010)CrossRefGoogle Scholar
  134. 134.
    S.N.F. Yusuf, A.D. Azzahari, R. Yahya, S.R. Majid, M.A. Careem, A.K. Arof, RSC Adv. 6, 27714–27724 (2016)CrossRefGoogle Scholar
  135. 135.
    H.L. Hsu, C.F. Tien, Y.T. Yang, J. Leu, Electrochim. Acta 91, 208–213 (2013)CrossRefGoogle Scholar
  136. 136.
    J.R. Bella, C. Nair, Gerbaldi, RSC Adv. 3, 15993–16001 (2013)CrossRefGoogle Scholar
  137. 137.
    R. Singh, N.A. Jadhav, S. Majumder, B. Bhattacharya, P.K. Singh, Carbohydr. Polym. 91, 682–685 (2013)CrossRefGoogle Scholar
  138. 138.
    P. Salvador, D. Puglies, F. Bella, A. Chiappone, A. Sacco, S. Bianco, M. Quaglio, Electrochim. Acta 146, 44–51 (2014)CrossRefGoogle Scholar
  139. 139.
    F. Bella, N.N. Mobarak, F.N. Jumaah, A. Ahmad, Electrochim. Acta 151, 306–311 (2015)CrossRefGoogle Scholar
  140. 140.
    M.H. Buraidah, L.P. Teo, S.R. Majid, R. Yahya, R.M. Taha, A.K. Arof, Int. J. Photoenergy 2010, 805836 (2010)CrossRefGoogle Scholar
  141. 141.
    K. Singh, B. Bhattacharya, R.K. Nagarale, K.W. Kim, H.W. Rhee, Synth. Met. 160, 139–142 (2010)CrossRefGoogle Scholar
  142. 142.
    M. Kaneko, T. Hoshi, Y. Kaburagi, H. Ueno, J. Electroanal. Chem. 572, 21–27 (2004)CrossRefGoogle Scholar
  143. 143.
    V.K. Singh, A. Annu, U. Singh, P. Singh, S.P. Pandey, B. Bhattacharya, P.K. Singh, J. Optoelectron. Adv. Mater. 15, 927–931 (2013)Google Scholar
  144. 144.
    J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, M. Kaneko, J. Electroanal. Chem. 599, 23–30 (2007)CrossRefGoogle Scholar
  145. 145.
    M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Opt. Mater. 32, 723–728 (2010)CrossRefGoogle Scholar
  146. 146.
    R. Singh, J. Baghel, S. Shukla, B. Bhattacharya, H.W. Rhee, P.K. Singh, Phase Transitions 87, 1237–1245 (2014)CrossRefGoogle Scholar
  147. 147.
    S. Rudhziah, A. Ahmad, I. Ahmad, N.S. Mohamed, Electrochim. Acta 175, 162–168 (2015)CrossRefGoogle Scholar
  148. 148.
    S. Alias, A.A. Mohamad, Ionics 19, 1185–1194 (2013)CrossRefGoogle Scholar
  149. 149.
    L. Hsu, W.T. Hsu, J. Leu, Electrochim. Acta 56, 5904–5909 (2011)CrossRefGoogle Scholar
  150. 150.
    K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe, S. Yanagida, C. R. Chimie 9, 611–616 (2006)CrossRefGoogle Scholar
  151. 151.
    Y. Yang, X.Y. Guo, X.Z. Zhao, Mater. Sci. Forum 685, 76–81 (2011)CrossRefGoogle Scholar
  152. 152.
    L. Hsu, C.F. Tien, Y.T. Yang, J. Leu, Electrochim. Acta 91, 208–213 (2013)CrossRefGoogle Scholar
  153. 153.
    M.H. Buraidah, L.P. Teo, S.N.F. Yusuf, M.M. Noor, M.Z. Kufian, M.A. Careem, S.R. Majid, R.M. Taha, A.K. Arof, Int. J. Photoenergy 2011, 273683Google Scholar
  154. 154.
    M.I. Vladu, Chem. Soc. Rev. 43, 588–610 (2014)CrossRefGoogle Scholar
  155. 155.
    D. Tobjörk, R. Österbacka, Adv. Mater. 23, 1935–1961 (2011)CrossRefGoogle Scholar
  156. 156.
    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Adv. Mater. 23, 3426–3430 (2011)CrossRefGoogle Scholar
  157. 157.
    C. Siegel, S.T. Philips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater. 20, 28–35 (2010)CrossRefGoogle Scholar
  158. 158.
    M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Nat. Commun. 3, 770 (2012)CrossRefGoogle Scholar
  159. 159.
    H. Zhu, Z. Fang, C. Preston, Y. Li, L. Hu, Energy Environ. Sci. 7, 269–287 (2014)CrossRefGoogle Scholar
  160. 160.
    Y. Zhou, T.M. Khan, J.C. Liu, C. Fuentes-Hernandez, J.W. Shim, E. Najafabadi, J.P. Youngblood, R.J. Moon, B. Kippelen, Org. Electron. 15, 661–666 (2014)CrossRefGoogle Scholar
  161. 161.
    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 50, 5438–5466 (2011)CrossRefGoogle Scholar
  162. 162.
    H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Adv. Mater. 17, 153–155 (2005)CrossRefGoogle Scholar
  163. 163.
    A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J. Appl. Polym. Sci. 37 (1983) Cellulose conference, Syracuse, NY, USAGoogle Scholar
  164. 164.
    T. Isogai, H. Saito, Fukuzumi, Nanoscale 3, 71–85 (2011)CrossRefGoogle Scholar
  165. 165.
    A. Hoeng, J. Denneulin, Bras, Nanoscale 8, 13131–13154 (2016)CrossRefGoogle Scholar
  166. 166.
    B. Filson, B.E. Dawson-Andoh, D. Schwegler-Berry, Green Chem. 11, 1808–1814 (2009)CrossRefGoogle Scholar
  167. 167.
    H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Biomacromolecules 10, 162–165 (2009)CrossRefGoogle Scholar
  168. 168.
    H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan, L. Hu, Nanoscale 5, 3787–3792 (2013)CrossRefGoogle Scholar
  169. 169.
    M. Pavan, S. Rühle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban, E. Fortunato, Sol. Energy Mater. Sol. Cells 132, 549–556 (2015)CrossRefGoogle Scholar
  170. 170.
    L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J.T. Bloking, M.D. McGehee, L. Wagberg, Y. Cui, Energy Environ. Sci. 6, 513–518 (2013)CrossRefGoogle Scholar
  171. 171.
    S.V. Costa, P. Pingel, S. Janiets, A.F. Nogueira, J. Appl. Polym. Sci. 133, 43679 (2016)CrossRefGoogle Scholar
  172. 172.
    L. Leonat, M.S. White, E.D. Glowacki, M.C. Scharber, T. Zillger, J. Rühling, A. Hünler, N.S. Sariciftci, J. Phys. Chem. C 118, 16813–16817 (2014)CrossRefGoogle Scholar
  173. 173.
    R.K. Pai, T.N. Ahipa, B. Hemavathi, RSC Adv. 6, 23760–23774 (2016)CrossRefGoogle Scholar
  174. 174.
    R.K. Pai, S. Pillai, T.N. Ahipa, J. Renew. Sustain. Energy 8, 023703 (2016)CrossRefGoogle Scholar
  175. 175.
    D. Carsten, D. Vladimir, Rep. Prog. Phys. 73, 092001–096901 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kishor Kumar Sadasivuni
    • 1
  • Kalim Deshmukh
    • 2
  • T. N. Ahipa
    • 3
  • Aqib Muzaffar
    • 2
  • M. Basheer Ahamed
    • 2
  • S. K. Khadheer Pasha
    • 4
  • Mariam Al-Ali Al-Maadeed
    • 5
  1. 1.Center for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.Department of PhysicsB. S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  3. 3.Nanostructured Hybrid Functional Materials and Devices, Centre for Nano and Material SciencesJain UniversityBangaloreIndia
  4. 4.Department of PhysicsVIT-AP UniversityGunturIndia
  5. 5.Materials Science & Technology Program (MATS), College of Arts & SciencesQatar UniversityDohaQatar

Personalised recommendations