Flexible, biodegradable and recyclable solar cells: a review

  • Kishor Kumar SadasivuniEmail author
  • Kalim DeshmukhEmail author
  • T. N. Ahipa
  • Aqib Muzaffar
  • M. Basheer Ahamed
  • S. K. Khadheer Pasha
  • Mariam Al-Ali Al-Maadeed


Solar energy is conceivably the largest source of renewable energy at our disposal, but vital advances are expected to make solar cells economically viable. Biodegradable and flexible solar cells are currently under extensive investigation for environmentally-friendly electronic applications. Biomaterials based solar cell is emerging due to their sustainable, scalable, abundant, renewable, and environmentally-friendly energy production. This review highlights recent research progress in the emerging group of biomaterials and their integration for flexible solar cell devices. The more emphasis is given to the absolute recyclable solar cell technology, processing conditions and optimized processing conditions to produce a high amount of energy. This review briefly describes the recent progress in these classes of material, covering substrates and semiconductors. A prominent demand still exists for a next-generation of flexible, biodegradable and biocompatible solar cell substrate for ultimate energy generation application.



This publication was made possible by the support of an UREP grant from the Qatar National Research Fund (UREP23-116-2-041). The statements made herein are solely the responsibility of the authors. Dr. Ahipa T. N. is grateful to the Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Kanakapura Taluk, Ramanagara-562112, India for providing necessary facilities. This research was supported by the Science & Engineering Research Board (SERB) (Project File No.: YSS/2014/000835) under Young Scientists Scheme, Govt. of India, New Delhi.


  1. 1.
    Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Sci. Rep. 3, 1536 (2013)Google Scholar
  2. 2.
    M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications, (Prentice-Hall, Inc., Englewood Cliffs, 1982)Google Scholar
  3. 3.
    R.C. Neville, Solar Energy Conversation: The Solar Cells (Elsevier, Amsterdam, 1978)Google Scholar
  4. 4.
    G.A. Chamberlain, Sol. Cells. 8, 47–83 (1983)Google Scholar
  5. 5.
    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, In: 37th IEEE Photovoltaic Specialists Conference, (2011), pp. 4–8Google Scholar
  6. 6.
    E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Appl. Phys. Lett. 51, 2222–2224 (1987)Google Scholar
  7. 7.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)Google Scholar
  8. 8.
    S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841–843 (2001)Google Scholar
  9. 9.
    M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt. 9, 287–293 (2001)Google Scholar
  10. 10.
    N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54, 17628–17637 (1996)Google Scholar
  11. 11.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. AlMaadeed, A.R. Polu, K. Chidambaram, J. Electron. Mater. 46, 2406–2418 (2017)Google Scholar
  12. 12.
    K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)Google Scholar
  13. 13.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)Google Scholar
  14. 14.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, A.M. Trimukhe, S.K.K. Pasha, A.R. Polu, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 24, 27 (2017)Google Scholar
  15. 15.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1995)Google Scholar
  16. 16.
    L.S. Roman, M.R. Andersson, T. Yohannes, O. Inganás, Adv. Mater. 9, 1164–1168 (1997)Google Scholar
  17. 17.
    J.J. Dittmer, E.A. Marseglia, R.H. Friend, Adv. Mater. 12, 1270–1274 (2000)Google Scholar
  18. 18.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, S.K.K. Pasha, R.R. Deshmukh, K. Chidambaram, Mater. Chem. Phys. 186, 188–201 (2017)Google Scholar
  19. 19.
    P.M. Borsenberger, W.T. Gruenbaum, M.B. O’Regan, L.J. Rossi, J. Polym. Sci. B 33, 2143–2149 (1995)Google Scholar
  20. 20.
    D.S. Ginger, N.C. Greenham, Phys. Rev. B 59, 10622–10629 (1999)Google Scholar
  21. 21.
    J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Grätzel, J. Phys. Chem. 100, 9577–9578 (1996)Google Scholar
  22. 22.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, J. Mater. Sci. 28, 559–575 (2017)Google Scholar
  23. 23.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, J. Appl. Polym. Sci. 134, 44427 (2017)Google Scholar
  24. 24.
    G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153–161 (2012)Google Scholar
  25. 25.
    M.J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G.G. Wallace, D.L. Officer, A. Furube, R. Katoh, S. Mori, A.J. Mozer, Chem Commun. 48, 4145–4162 (2012)Google Scholar
  26. 26.
    C.W. Tang, Appl. Phys. Lett. 48, 183–185 (1986)Google Scholar
  27. 27.
    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474–1476 (1992)Google Scholar
  28. 28.
    M. Hiramoto, H. Fujiwara, M. Yokoyama, J. Appl. Phys. 72, 3781–3787 (1992)Google Scholar
  29. 29.
    M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 805–813 (2008)Google Scholar
  30. 30.
    C.J. Brabec, Sol. Energy Mater. Sol. Cells 83, 273–292 (2004)Google Scholar
  31. 31.
    F.C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Sol. Energy Mater. Sol. Cells 83, 293–300 (2004)Google Scholar
  32. 32.
    M.K. Mohanapriya, K. Deshmukh, B. Ahamed, K. Chidambaram, S.K.K. Pasha, Adv. Mater. Lett. 7, 996–1002 (2016)Google Scholar
  33. 33.
    R.E. Chapin, M.W. Harris, E.S. Hunter, B.J. Davis, B.J. Collins, A.C. Lockhart, Fundam. Appl. Toxicol. 27, 140–148 (1995)Google Scholar
  34. 34.
    A. Boughriet, N. Proix, G. Billon, P. Recourt, B. Ouddane, Water Air Soil Pollut. 180, 83–95 (2007)Google Scholar
  35. 35.
    Z. Tong, M. Bischoff, L. Nies, B. Applegate, R.F. Turco, Environ. Sci. Technol. 41, 2985–2991 (2007)Google Scholar
  36. 36.
    Y.B. Cheng, A. Pascoe, F. Huang, Y. Peng, Nature 539, 488–489 (2016)Google Scholar
  37. 37.
    F. Wang, Z. Chen, L. Xiao, B. Qu, Q. Gong, Sol. Energy Mater. Sol. Cells 94, 1270–1274 (2010)Google Scholar
  38. 38.
    T.S. Kim, S.I. Na, S.S. Kim, B.K. Yu, J.S. Yeo, D.Y. Kim, Phys. Status Solidi RRL 6, 13–15 (2012)Google Scholar
  39. 39.
    A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 1, 1018–1022 (2011)Google Scholar
  40. 40.
    J. Vartiainen, T. Pöhler, K. Sirola, L. Pylkkänen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, A. Laukkanen, Cellulose 18, 775–786 (2011)Google Scholar
  41. 41.
    N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Carbohydr. Polym. 90, 735–764 (2012)Google Scholar
  42. 42.
    H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, L. Chen, J. Mater. Chem. A 1, 3938–3944 (2013)Google Scholar
  43. 43.
    S. Berson, R.D. Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 17, 1377–1384 (2007)Google Scholar
  44. 44.
    S.J. Lee, Y.H. Kim, J.K. Kim, H. Baik, J.H. Park, J. Lee, J. Nam, J.H. Park, T.W. Lee, G.R. Yi, J.H. Cho, Nanoscale 6, 11828–11834 (2014)Google Scholar
  45. 45.
    M. Pagliaro, R. Ciriminna, G. Palmisano, Chem Sus Chem. 1, 880–891 (2008)Google Scholar
  46. 46.
    D. Pola, A. Chianese, Bernasconi, Sol. Energy 81, 1144–1158 (2007)Google Scholar
  47. 47.
    H. Park, Y. Jun, H.G. Yun, S.Y. Lee, M.G. Kang, J. Electrochem. Soc. 155, F145–F149 (2008)Google Scholar
  48. 48.
    T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Sol. Energy Mater. Sol. Cells 94, 812–816 (2010)Google Scholar
  49. 49.
    T. Miyasaka, M. Ikegami, Y. Kijitori, J. Electrochem. Soc. 154, A455–A461 (2007)Google Scholar
  50. 50.
    S. Ito, N.L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, Chem. Commun. 2006, 4004–4006 (2006)Google Scholar
  51. 51.
    M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Nat. Mater. 4, 607–611 (2005)Google Scholar
  52. 52.
    T.N. Murakami, K. Yujiro, K. Norimichi, M. Tsutomu, Chem. Lett. 32, 1076–1077 (2003)Google Scholar
  53. 53.
    H. Pan, S.H. Ko, N. Misra, C.P. Grigoropoulos, Appl. Phys. Lett. 94, 071117 (2009)Google Scholar
  54. 54.
    D. Zhang, T. Yoshida, K. Furuta, H. Minoura, J. Photochem. Photobiol. A 164, 159–166 (2004)Google Scholar
  55. 55.
    H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, J. Photochem. Photobiol. A 145, 107–112 (2001)Google Scholar
  56. 56.
    W. Cai, X. Gong, Y. Cao, Sol. Energy Mater. Sol. Cells 94, 114–127 (2010)Google Scholar
  57. 57.
    M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87, 083506 (2005)Google Scholar
  58. 58.
    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158 (2008)Google Scholar
  59. 59.
    G. Hashmi, K. Miettunen, T. Peltola, J. Halme, I. Asghar, K. Aitola, M. Toivola, P. Lund, J. Renew. Sustain. Energy Rev. 15, 3717–3732 (2011)Google Scholar
  60. 60.
    T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C.J. Brabec, Adv. Funct. Mater. 15, 1193–1196 (2005)Google Scholar
  61. 61.
    F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Sol. Energy Mater. Sol. Cells 93, 422–441 (2009)Google Scholar
  62. 62.
    J. Liu, E.N. Kadnikova, Y. Liu, M.D. McGehee, J.M. J. Fréchet, J. Am. Chem. Soc. 126, 9486–9487 (2004)Google Scholar
  63. 63.
    T. Nielsen, K. Bechgaard, F.C. Krebs, Macromolecules 38, 658–659 (2005)Google Scholar
  64. 64.
    H. Wolf, Rauschenbach, Adv. Energy Convers. 3, 455–479 (1963)Google Scholar
  65. 65.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394–412 (2009)Google Scholar
  66. 66.
    O. Jørgensen, J. Hagemann, F.C. Alstrup, Krebs, Sol. Energy Mater. Sol. Cells 93, 413–421 (2009)Google Scholar
  67. 67.
    J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Nat. Mater. 6, 497–500 (2007)Google Scholar
  68. 68.
    W.M. Keogh, A.W. Blakers, Accurate Performance Measurement of Silicon Solar Cells, (Australian National University Research Publications, Canberra, 2018) pp. 1–200Google Scholar
  69. 69.
    K.A. Emergy, C.R. Osterwald, PV performance measurement algorithms procedures and equipment. IEEE Conf. Photovolt. Spec. 1062, 1068–1073 (1990)Google Scholar
  70. 70.
    I. Santiago, D. Trillo-Montero, I.M. Moreno-Garcia, V. Pallarés-López, J.J. Luna-Rodríguez, Renew. Sustain. Energy Rev. 90, 70–89 (2018)Google Scholar
  71. 71.
    M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4, 96–99 (2014)Google Scholar
  72. 72.
    T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Sol. Energ. Mater. Sol. Cells 95, 18–21 (2011)Google Scholar
  73. 73.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)Google Scholar
  74. 74.
  75. 75.
    A. Freundlich, A. Alemu, Physica Status Solidi C 2, 2978–2981 (2005)Google Scholar
  76. 76.
    A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, Nat. Mater. 10, 857 (2011)Google Scholar
  77. 77.
    L. You, K. Dou, T. Yoshimura, K. Kato, T. Ohya, K. Moriarty, C.C. Emery, J. Chen, G. Gao, Y. Li, Yang, Nat. Commun. 4, 1446 (2013)Google Scholar
  78. 78.
    A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S.W. Glunz, Prog. Photovolt. Res. Appl. 15, 493–505 (2007)Google Scholar
  79. 79.
    R. McIntosh, C.B. Honsberg, The influence of edge recombination on a solar cell’s IV curve, In: Proc. 16th PVSEC, Glasgow, (2000) pp. 1651–1654Google Scholar
  80. 80.
  81. 81.
    J. Schmidt, M. Kerr, P.P. Altermatt, J. Appl. Phys. 88, 1494–1497 (2000)Google Scholar
  82. 82.
    J. Kerr, A. Cuevas, R.A. Sinton, J. Appl. Phys. 91, 399–404 (2002)Google Scholar
  83. 83.
    A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 86, 165202 (2012)Google Scholar
  84. 84.
    B. Sproul, J. Appl. Phys. 76, 2851–2854 (1994)Google Scholar
  85. 85.
    K.L. Luke, L.J. Cheng, J. Appl. Phys. 61, 2282–2293 (1987)Google Scholar
  86. 86.
    A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, D. Salzman, Prog. Photovolt. Res. Appl. 17, 75–83 (2009)Google Scholar
  87. 87.
    A. Cuevas, D. Macdonald, Sol. Energy 76, 255–262 (2004)Google Scholar
  88. 88.
    H. Nagel, C. Berge, A.G. Aberle, J. Appl. Phys. 86, 6218–6221 (1999)Google Scholar
  89. 89.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A.D. Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Nature 397, 121–128 (1999)Google Scholar
  90. 90.
    A. Kraft, Plated Copper Front Side Metallization on Printed Seed-layers for Silicon Solar Cells, (Fraunhofer Verlag, Stuttgart, 2015)Google Scholar
  91. 91.
    R. Corkish, K. Luke, P. Altermatt, G. Heiser, Simulating electron-beam-induced current profiles across p-n junctions, In: 16th European Solar Energy Conference (2000) pp. 1590–1593Google Scholar
  92. 92.
    F.M. Smits, Bell Syst. Technol. J. 37, 711–718 (1958)Google Scholar
  93. 93.
    F.P. Dale, Smith, J. Appl. Phys. 32, 1377–1381 (1961)Google Scholar
  94. 94.
    L. Gostein, Dunn, Light soaking effects on photovoltaic modules; overview and literature review. Overview and literature review. In Photovoltaic Specialists Conference (PVSC), 37th IEEE, (2011), pp. 003126–003131Google Scholar
  95. 95.
    A.A. Shruti, V.D. Vivek, M. Subas, B.O. Satishchandra, RSC Adv. 2, 11645–11649 (2012)Google Scholar
  96. 96.
    G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y.J. Shin, Adv. Mater. 17, 2349–2353 (2005)Google Scholar
  97. 97.
    S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, J. Photochem. Photobiol. A 164, 93–96 (2004)Google Scholar
  98. 98.
    R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631–2645 (1998)Google Scholar
  99. 99.
    R. Goebbert, M.A. Nonninger, H. Aegerter, Schmidt, Thin Solid Films 351, 79–84 (1999)Google Scholar
  100. 100.
    K. Zeng, F. Zhu, J. Hu, L. Shen, K. Zhang, H. Gong, Thin solid films 443, 60–65 (2003)Google Scholar
  101. 101.
    J.G. Doh, J.S. Hong, R. Vittal, M.G. Kang, N.G. Park, K.J. Kim, Chem. Mater. 16, 493–497 (2004)Google Scholar
  102. 102.
    T. Karasawa, Y. Miyata, Thin Solid Films 223, 79–84 (1993)Google Scholar
  103. 103.
    J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, C.M. Chang, Appl. Phys. Lett. 72, 3317–3319 (1998)Google Scholar
  104. 104.
    S. Major, K.L. Chopra, Sol. Energy Mater. 17, 319–327 (1988)Google Scholar
  105. 105.
    O. Akinwunmi, M.A. Eleruja, J.O. Olowolafe, G.A. Adeqboyega, E.O.B. Ajayi, Opt. Mater. 13, 255–259 (1999)Google Scholar
  106. 106.
    C. Liu, T. Matsutani, N. Yamamoto, M. Kiuchi, Europhys. Lett. 59, 606–611 (2002)Google Scholar
  107. 107.
    S. Ngamsinlapasathian, A. Kitiyanan, T. Fujieda, S. Yoshikawa, ECS Trans. 1, 7–15 (2006)Google Scholar
  108. 108.
    A. Katz, S. Gevorgyan, M.S. Orynbayev, F.C. Krebs, Eur. Phys. J. Appl. Phys. 36, 307–311 (2007)Google Scholar
  109. 109.
    J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Energy Environ. Sci. 10, 337–345 (2017)Google Scholar
  110. 110.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)Google Scholar
  111. 111.
    J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin, T.A. Sato, Adv. Funct. Mater. 17, 2645–2652 (2007)Google Scholar
  112. 112.
    A.F. Nogueira, C. Longo, M.A. De Paoli, Coord. Chem. Rev. 248, 1455–1468 (2004)Google Scholar
  113. 113.
    Y. Wang, Sol. Energy Mater. Sol. Cells 93, 1167–1175 (2009)Google Scholar
  114. 114.
    A.F. Nogueira, M.A. De Paoli, Sol. Energy Mater. Sol. Cells 61, 135–141 (2000)Google Scholar
  115. 115.
    F. Nogueira, J.R. Durrant, M.A. De Paoli, Adv. Mater. 13, 826–830 (2001)Google Scholar
  116. 116.
    T. Stergiopoulos, I.M. Arabatzis, M. Kalbac, I. Lukes, P. Falaras, J. Mater. Process. Technol. 161, 107–112 (2005)Google Scholar
  117. 117.
    T. Stergiopoulos, I.M. Arabatzis, H. Cachet, P.J. Falaras, J. Photochem. Photobiol. A 155, 163–170 (2003)Google Scholar
  118. 118.
    A. Vicente, H. Águas, T. Mateus, A. Araújo, A. Lyubchyk, S. Siitonen, E. Fortunato, R. Martins, J. Mat. Chem. A 3, 13226–13236 (2015)Google Scholar
  119. 119.
    V.R. Voggu, J. Sham, S. Pfeffer, J. Pate, L. Fillip, T.B. Harvey, R.M. Brown Jr., B.A. Korgel, ACS Energy Lett. 2, 574–581 (2017)Google Scholar
  120. 120.
    D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973)Google Scholar
  121. 121.
    A.T. Vicente, A. Araújo, M.J. Mendes, D. Nunes, M.J. Oliveira, O. Sanchez-Sobrado, M.P. Ferreira, H. Águas, E. Fortunato, R. Martins, J. Mater. Chem. C 6, 3143–3181 (2018)Google Scholar
  122. 122.
    R. Martins, I. Ferreira, E. Fortunato, Physica Status Solidi RRL 5, 332–335 (2011)Google Scholar
  123. 123.
    A. Vincent, Prog. Solid State Chem. 17, 145–261 (1987)Google Scholar
  124. 124.
    J.N. De Freitas, J.E. Benedetti, F.S. Freitas, A.F. Nogueira, M.A. De Paoli, Polymer electrolytes for dye-sensitized solar cells, In Polymer Electrolytes: Fundamentals and Applications, edited by C. Sequeira, D. Santos (Woodhead Publishing Ltd, Cambridge, 2010), p. 387Google Scholar
  125. 125.
    M.H. Khanmirzaei, S. Ramesh, K. Ramesh, Mater. Des. 85, 833–837 (2015)Google Scholar
  126. 126.
    Y. Yang, J. Cui, P. Yi, X. Zheng, X. Guo, W. Wang, J. Power Sources 248, 988–993 (2014)Google Scholar
  127. 127.
    H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Adv. Funct. Mater. 25, 3592–3598 (2015)Google Scholar
  128. 128.
    M. Smeets, K. Wilken, K. Bittkau, H. Aguas, L. Pereira, E. Fortunato, R. Martins, V. Smirnov, Physica Status Solidi A 214, 1700070 (2017)Google Scholar
  129. 129.
    J. Shi, S. Peng, J. Pei, Y. Liang, F. Cheng, J. Chen, ACS Appl. Mater. Interfaces 1, 944–950 (2009)Google Scholar
  130. 130.
    Y. Saito, H. Kataoka, C. Capiglia, H. Yamamoto, J. Phys. Chem. B 104, 2189–2192 (2000)Google Scholar
  131. 131.
    S.N.F. Yusuf, M.F. Aziz, H.C. Hassan, T.M.W.J. Bandara, B.E. Mellander, M.A. Careem, A.K. Arof, J. Chem. 2014, 783023 (2014)Google Scholar
  132. 132.
    Y. Yang, H. Hu, C.H. Zhou, S. Xu, B. Sebo, X.Z. Zhao, J. Power Sources 196, 2410–2415 (2011)Google Scholar
  133. 133.
    O. Avellaneda, A.D. Goncalves, J.E. Benedetti, A.F. Nogueira, Electrochim. Acta 55, 1468–1474 (2010)Google Scholar
  134. 134.
    S.N.F. Yusuf, A.D. Azzahari, R. Yahya, S.R. Majid, M.A. Careem, A.K. Arof, RSC Adv. 6, 27714–27724 (2016)Google Scholar
  135. 135.
    H.L. Hsu, C.F. Tien, Y.T. Yang, J. Leu, Electrochim. Acta 91, 208–213 (2013)Google Scholar
  136. 136.
    J.R. Bella, C. Nair, Gerbaldi, RSC Adv. 3, 15993–16001 (2013)Google Scholar
  137. 137.
    R. Singh, N.A. Jadhav, S. Majumder, B. Bhattacharya, P.K. Singh, Carbohydr. Polym. 91, 682–685 (2013)Google Scholar
  138. 138.
    P. Salvador, D. Puglies, F. Bella, A. Chiappone, A. Sacco, S. Bianco, M. Quaglio, Electrochim. Acta 146, 44–51 (2014)Google Scholar
  139. 139.
    F. Bella, N.N. Mobarak, F.N. Jumaah, A. Ahmad, Electrochim. Acta 151, 306–311 (2015)Google Scholar
  140. 140.
    M.H. Buraidah, L.P. Teo, S.R. Majid, R. Yahya, R.M. Taha, A.K. Arof, Int. J. Photoenergy 2010, 805836 (2010)Google Scholar
  141. 141.
    K. Singh, B. Bhattacharya, R.K. Nagarale, K.W. Kim, H.W. Rhee, Synth. Met. 160, 139–142 (2010)Google Scholar
  142. 142.
    M. Kaneko, T. Hoshi, Y. Kaburagi, H. Ueno, J. Electroanal. Chem. 572, 21–27 (2004)Google Scholar
  143. 143.
    V.K. Singh, A. Annu, U. Singh, P. Singh, S.P. Pandey, B. Bhattacharya, P.K. Singh, J. Optoelectron. Adv. Mater. 15, 927–931 (2013)Google Scholar
  144. 144.
    J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, M. Kaneko, J. Electroanal. Chem. 599, 23–30 (2007)Google Scholar
  145. 145.
    M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Opt. Mater. 32, 723–728 (2010)Google Scholar
  146. 146.
    R. Singh, J. Baghel, S. Shukla, B. Bhattacharya, H.W. Rhee, P.K. Singh, Phase Transitions 87, 1237–1245 (2014)Google Scholar
  147. 147.
    S. Rudhziah, A. Ahmad, I. Ahmad, N.S. Mohamed, Electrochim. Acta 175, 162–168 (2015)Google Scholar
  148. 148.
    S. Alias, A.A. Mohamad, Ionics 19, 1185–1194 (2013)Google Scholar
  149. 149.
    L. Hsu, W.T. Hsu, J. Leu, Electrochim. Acta 56, 5904–5909 (2011)Google Scholar
  150. 150.
    K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe, S. Yanagida, C. R. Chimie 9, 611–616 (2006)Google Scholar
  151. 151.
    Y. Yang, X.Y. Guo, X.Z. Zhao, Mater. Sci. Forum 685, 76–81 (2011)Google Scholar
  152. 152.
    L. Hsu, C.F. Tien, Y.T. Yang, J. Leu, Electrochim. Acta 91, 208–213 (2013)Google Scholar
  153. 153.
    M.H. Buraidah, L.P. Teo, S.N.F. Yusuf, M.M. Noor, M.Z. Kufian, M.A. Careem, S.R. Majid, R.M. Taha, A.K. Arof, Int. J. Photoenergy 2011, 273683Google Scholar
  154. 154.
    M.I. Vladu, Chem. Soc. Rev. 43, 588–610 (2014)Google Scholar
  155. 155.
    D. Tobjörk, R. Österbacka, Adv. Mater. 23, 1935–1961 (2011)Google Scholar
  156. 156.
    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Adv. Mater. 23, 3426–3430 (2011)Google Scholar
  157. 157.
    C. Siegel, S.T. Philips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater. 20, 28–35 (2010)Google Scholar
  158. 158.
    M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Nat. Commun. 3, 770 (2012)Google Scholar
  159. 159.
    H. Zhu, Z. Fang, C. Preston, Y. Li, L. Hu, Energy Environ. Sci. 7, 269–287 (2014)Google Scholar
  160. 160.
    Y. Zhou, T.M. Khan, J.C. Liu, C. Fuentes-Hernandez, J.W. Shim, E. Najafabadi, J.P. Youngblood, R.J. Moon, B. Kippelen, Org. Electron. 15, 661–666 (2014)Google Scholar
  161. 161.
    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 50, 5438–5466 (2011)Google Scholar
  162. 162.
    H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Adv. Mater. 17, 153–155 (2005)Google Scholar
  163. 163.
    A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J. Appl. Polym. Sci. 37 (1983) Cellulose conference, Syracuse, NY, USAGoogle Scholar
  164. 164.
    T. Isogai, H. Saito, Fukuzumi, Nanoscale 3, 71–85 (2011)Google Scholar
  165. 165.
    A. Hoeng, J. Denneulin, Bras, Nanoscale 8, 13131–13154 (2016)Google Scholar
  166. 166.
    B. Filson, B.E. Dawson-Andoh, D. Schwegler-Berry, Green Chem. 11, 1808–1814 (2009)Google Scholar
  167. 167.
    H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Biomacromolecules 10, 162–165 (2009)Google Scholar
  168. 168.
    H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan, L. Hu, Nanoscale 5, 3787–3792 (2013)Google Scholar
  169. 169.
    M. Pavan, S. Rühle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban, E. Fortunato, Sol. Energy Mater. Sol. Cells 132, 549–556 (2015)Google Scholar
  170. 170.
    L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J.T. Bloking, M.D. McGehee, L. Wagberg, Y. Cui, Energy Environ. Sci. 6, 513–518 (2013)Google Scholar
  171. 171.
    S.V. Costa, P. Pingel, S. Janiets, A.F. Nogueira, J. Appl. Polym. Sci. 133, 43679 (2016)Google Scholar
  172. 172.
    L. Leonat, M.S. White, E.D. Glowacki, M.C. Scharber, T. Zillger, J. Rühling, A. Hünler, N.S. Sariciftci, J. Phys. Chem. C 118, 16813–16817 (2014)Google Scholar
  173. 173.
    R.K. Pai, T.N. Ahipa, B. Hemavathi, RSC Adv. 6, 23760–23774 (2016)Google Scholar
  174. 174.
    R.K. Pai, S. Pillai, T.N. Ahipa, J. Renew. Sustain. Energy 8, 023703 (2016)Google Scholar
  175. 175.
    D. Carsten, D. Vladimir, Rep. Prog. Phys. 73, 092001–096901 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kishor Kumar Sadasivuni
    • 1
    Email author
  • Kalim Deshmukh
    • 2
    Email author
  • T. N. Ahipa
    • 3
  • Aqib Muzaffar
    • 2
  • M. Basheer Ahamed
    • 2
  • S. K. Khadheer Pasha
    • 4
  • Mariam Al-Ali Al-Maadeed
    • 5
  1. 1.Center for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.Department of PhysicsB. S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  3. 3.Nanostructured Hybrid Functional Materials and Devices, Centre for Nano and Material SciencesJain UniversityBangaloreIndia
  4. 4.Department of PhysicsVIT-AP UniversityGunturIndia
  5. 5.Materials Science & Technology Program (MATS), College of Arts & SciencesQatar UniversityDohaQatar

Personalised recommendations