Advertisement

Novel chromophore with tricyanocyclopentenone electronic acceptor and its application in organic EO polymers

  • Li Guo
  • Zupeng Guo
  • Xiaobing LiEmail author
Article
  • 36 Downloads

Abstract

Novel organic second nonlinear optical chromophore GL-1 based on tricyanocyclopentenone (TCNP) electronic acceptor group were designed and synthesized in this paper. The structure of chromophore GL-1 is characterized by mass spectrum and nuclear magnetic resonance spectroscopy. Chromophore FTC based on traditional tricyanofuran (TCF) electronic acceptor was also prepared as the contrast. Their delocalized energy levels were estimated by UV–Vis spectra. Their thermal properties were studied by thermogravimetric analysis. Obviously, chromophore GL-1 showed lower delocalized energy levels and higher thermal decomposition temperature (just about 286 °C). Electro-optics polymers prepared based on chromophore GL-1 showed the largest SHG coefficients of about 119 pm/V, which was about two times higher than chromophore FTC (about 68 pm/V). These advantages of chromophore GL-1 are attributed to the improvement of first order hyperpolarizability and the attenuatation of intermolecular dipole interaction by the introduction of tricyanocyclopentenone electronic acceptor. And in another word, tricyanocyclopentenone electronic acceptor may be a promising way to drastically change the nonlinear optical features of the titled compounds and show a direction of designing new electron acceptor in the field of nonlinear optical materials.

Notes

Acknowledgements

We are grateful to the Youth Foundation of Qinghai University (YFQHU.2016-0103) for financial support. And thanks for prof. Li in University of Electronic Science and technology for measurement of the EO polymers’ second harmonic generation.

References

  1. 1.
    Y. Song, P. Xu, Opt. Commun. 426, 30–34 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, Y. Yang, Adv. Func. Mater. 28, 1802180 (2018)CrossRefGoogle Scholar
  3. 3.
    W. Wang, M. Du, M. Zhang, J. Miao, Y. Fang, F. Zhang, Adv. Opt. Mater. 6, 1800249 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Enami, A. Seki, S. Masuda, T. Joichi, J. Luo, A. Jen, J. Lightwave Technol. 36, 4181–4189 (2018)CrossRefGoogle Scholar
  5. 5.
    F. Mokhtari-Koushyar, E. Heidari, H. Dalir, C. Chung, X. Xu, V. Sorger, R. Chen, J. Lightwave Technol. 36, 3418–3426 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Mercante, S. Shi, P. Yao, L. Xie, R. Weikle, D. Prather, Opt. Express 26, 14810–14816 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Liu, W. Gao, I. Kityk, X. Liu, Z. Zhen, Dyes Pigments 122, 74 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, Z. Zhen, RSC Adv. 5, 15784 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Kulhanek, F. Bures, W. Kuznik, I. Kityk, T. Mikysek, A. Ruznicka, Chem. Asian J. 8, 465 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Durand, S. Achelle, S. Gauthier, N. Cabon, M. Ducamp, S. Kahlal, J. Saillard, A. Barsella, G. Robin-Le, Dyes Pigments 155, 68 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Liu, W. Gao, X. Liu, Z. Zhen, Mater. Lett. 143, 333 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Jang, J. Luo, N. Tucker, A. Leclercq, E. Zojer, M. Haller, T. Kim, J. Kang, K. Firestone, D. Bale, D. Lao, J. Benedict, D. Cohen, W. Kaminsky, B. Kahr, J. Bredas, P. Reid, L. Dalton, A. Jen, Chem. Mater. 18, 2982 (2006)CrossRefGoogle Scholar
  13. 13.
    Z. Shi, S. Hau, J. Luo, T. Kim, N. Tucker, J. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, A. Jen, Adv. Funct. Mater. 17, 2557 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Benigh, D. Bale, B. Olbricht, L. Dalton, J. Mater. Chem. 19, 7466 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Liu, A. Franiv, X. Liu, Z. Zhen, J Mater Sci. Mater. Electron. 24, 2701 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Tang, K. Jia, X. Tang, L. Chen, L. Pan, J. Mater. Sci. Mater. Electron. 27, 7174 (2016)CrossRefGoogle Scholar
  17. 17.
    W. Gao, G. Qin, J. Liu, A. Fedorchuk, K. Ozga, I. Kityk, J. Mater. Sci. Mater. Electron. 28, 8480 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Yin, Q. He, Z. Lin, L. Luo, Y. Liu, S. Yang, H. Wu, M. Ding, Y. Huang, X. Duan, Angew. Chem. Int. Ed. 55, 583 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Liu, M. Zhang, W. Gao, A. Fedorchuk, I. Kityk, J. Mol. Struct. 1165, 223 (2018)CrossRefGoogle Scholar
  20. 20.
    Z. Cheng, R. Tang, R. Wang, Y. Xie, P. Chen, G. Liu, Z. Li, Polym. Chem. 9, 3522 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Zhou, J. Liu, M. Wang, W. Hou, G. Qin, I. Kityk, A. Fedorchuk, A. Albassam, A. El-Naggar, A. Andrushchak, J. Mater. Sci. Mater. Electron. 28, 18568 (2017)CrossRefGoogle Scholar
  22. 22.
    K. Traskovskis, A. Bundulis, I. Mihailovs, Phys. Chem. Chem. Phys. 20, 404 (2018)CrossRefGoogle Scholar
  23. 23.
    T. Lopes, D. Machado, C. Risko, J. Bredas, H. Oliveira, J. Phys. Chem. Lett. 9, 1377 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Wang, Y. Yuan, Phys. Chem. Chem. Phys. 20, 16777 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Karpov, A. Grigor’ev, Y. Kayukov, I. Karpova, O. Nasakin, V. Tafeenko, J. Org. Chem. 81, 6402 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Szlachcic, A. Fedorchuk, A. Danel, B. Jarosz, A. ElNaggar, A. Albassam, A. Wojciechowski, E. Gondek, T. Uchacz, K. Stadnicka, G. Lakshminarayana, I. Kityk, Dyes Pigments 141, 333 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Ouyang, J. Liu, Q. Liu, Y. Li, D. Yan, Q. Wang, M. Guo, A. Cao, ACS Appl. Mater. Interface 9, 10366 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Marder, D. Beratan, L. Cheng, Science 252, 103 (1991)CrossRefGoogle Scholar
  29. 29.
    J. Qudar, D. Chemla, J. Chem. Phys. 66, 2664 (1977)CrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, R. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  31. 31.
    M. Zhang, G. Qin, J. Liu, Z. Zhen, A. Fedorchuk, G. Lakshminarayana, A. Albassam, A. El-Naggar, K. Ozga, I. Kityk, Chem. Phys. Lett. 681, 105 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringQinghai UniversityXiningPeople’s Republic of China
  2. 2.Institute of Basic MedicineSAMSJinanPeople’s Republic of China

Personalised recommendations