Substrate temperature-dependent properties of sprayed cobalt oxide thin films

  • Nabila Kouidri
  • Saâd RahmaneEmail author
  • Abdelkrim Allag


Cobalt oxide (Co3O4) thin films were deposited onto amorphous glass substrates using a home-made pneumatic spray pyrolysis system (SPT) from aqueous solution of cobalt chloride salt (CoCl2) as a source of cobalt. The films were deposited at different substrate temperatures ranging from 250 to 450 °C in steps of 50 °C. The effect of substrate temperature on structural, electrical and optical properties was studied. The characterization of samples was carried out by X-ray diffraction (XRD), UV–Vis spectroscopy, energy dispersive spectroscopy (EDS), scanning electron microscopy and four probe points measurements. The XRD study showed that all the films were polycrystalline consisting of Co3O4 spinel cubic phase. The preferred orientation of the crystallites changed from (311) to (111) when the substrate temperature increases. The average calculated grain size was about 40.38 nm. Morphological studies exposed that the films surface morphology is almost homogeneous and well-covered. Peaks associated with Co and O elements are present in EDS analysis witch confirm the composition of the films. The optical transmittance and the band gaps energy increase with the increase of substrate temperature. The measured electrical conductivity at room temperature was found in the order of 10−1 (Ω cm)−1.


  1. 1.
    M. Rahimi-Nasrabadi, H.R. Naderi, M.S. Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci.: Mater. Electron. 28, 1877 (2017)Google Scholar
  2. 2.
    M. Aghazadeh, R. Ahmadi, D. Gharailou, M.R. Ganjali, P. Norouzi, J. Mater. Sci.: Mater. Electron. 27(8), 8623 (2016)Google Scholar
  3. 3.
    A. Louardi, T. Chtouki, A. Rmili, B. Elidrissi, H. Erguig, Int. J. Appl. Eng. Res. 11(2), 1432–1435 (2016)Google Scholar
  4. 4.
    H. Che, A. Liu, J. Hou, J. Mu, Y. Bai, S. Zhao, X. Zhang, H. He, J. Mater. Sci.: Mater. Electron. 25, 3209–3218 (2014)Google Scholar
  5. 5.
    P.N. Shelke, Y.B. Khollam, K.R. Patil, S.D. Gunjal, S.R. Jadkar, M.G. Takwale, K.C. Mohite, J. Nano-Electron. Phys. 3(1), 486–498 (2011)Google Scholar
  6. 6.
    L. Pan, Z. Zhang, Mater. Electron. 21, 1262–1269 (2010)CrossRefGoogle Scholar
  7. 7.
    A.N.C. Agbogu, A.B.C. Ekwealor, F.I. Ezema, Dig. J. Nanomater. Biostruct. 9(3), 1289–1296 (2014)Google Scholar
  8. 8.
    H.H. Daroysh, AL-Muthanna J. Pure Sci. (MJPS) 3(2), 285–294 (2016)Google Scholar
  9. 9.
    V. Patil, P. Joshi, M. Chougule, S. Sen, Nanosci. Lett. 2, 1–7 (2012)CrossRefGoogle Scholar
  10. 10.
    C.L. Liao, Y.H. Lee, S.T. Chang, K.Z. Fuang, J. Power Sources 158, 1379 (2006)CrossRefGoogle Scholar
  11. 11.
    S.Z. Abbas, A.A. Aboud, M. Irfan, S. Alam, Mater. Sci. Eng. 60, 012058 (2014)Google Scholar
  12. 12.
    L. Armelao, D. Barreca, S. Gross, A. Martucci, M. Tieto, E. Tondello, J. Non-Cryst. Solids 293–295, 477–482 (2001)CrossRefGoogle Scholar
  13. 13.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Int. J. Sci. Nat. 5(4), 663–668 (2014)Google Scholar
  14. 14.
    D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Chem. Mater. 13, 588–593 (2001)CrossRefGoogle Scholar
  15. 15.
    T.AH. Abbas, L.H. Slewa, H.A. Khizir et al., J. Mater. Sci.: Mater. Electron. 28, 1951 (2017)Google Scholar
  16. 16.
    A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, G. Brahim, Optik 127, 2653–2658 (2016)CrossRefGoogle Scholar
  17. 17.
    V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252, 7487–7492 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Abdelkrim, S. Rahmane, K. Nabila, A. Hafida, O. Abdelouahab, J. Mater. Sci.: Mater. Electron. 28, 4772–4779 (2017)Google Scholar
  19. 19.
    A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, H. Erguig, J. Alloys Compd. 509, 9183–9189 (2011)CrossRefGoogle Scholar
  20. 20.
    R. Manogowri, R. Mary Mathelane, S. Valanarasu, I. Kulandaisamy, A. Benazir Fathima, A. Kathalingam, J. Mater. Sci.: Mater. Electron. 27(4), 3860–3866 (2016)Google Scholar
  21. 21.
    M. Manickam, V. Ponnuswamy, C. Sankar, R. Mariappan, R. Suresh, Silicon 8(3), 351–360 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Abdelkrim, S. Rahmane, O. Abdelouahab, A. Hafida, K. Nabila, Chin. Phys. B 25(4), 046801 (2016)CrossRefGoogle Scholar
  23. 23.
    A.B.C. Ekwealor, S.U. Offiah, S.C. Ezugwuand, F.I. Ezema, Indian J. Mater. Sci. 2014, 367950 (2014)Google Scholar
  24. 24.
    G.B. Williamson, R.C. Smallman, Philos. Mag. 1, 34–46 (1956)CrossRefGoogle Scholar
  25. 25.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)Google Scholar
  26. 26.
    A. Lakehal, B. Bedhiaf, A. Bouaza, H. Benhebal, A. Ammaric, C. Dalache, Mater. Res. 21(3), e20170545 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, Thin Solid Films 562, 70–74 (2014)CrossRefGoogle Scholar
  28. 28.
    O. Gencyılmaz, T. Taskopru, F. Atay, I. Akyuz, Appl. Phys. A 121(1), 245–254 (2015)CrossRefGoogle Scholar
  29. 29.
    S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2(3), 221–227 (2013)CrossRefGoogle Scholar
  30. 30.
    P.S. Patil, L.D. Kadam, C.D. Lokhande, Thin Solid Films 272, 29–32 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nabila Kouidri
    • 1
  • Saâd Rahmane
    • 1
    Email author
  • Abdelkrim Allag
    • 1
  1. 1.Laboratoire de Physique des Couches Minces et ApplicationsUniversité de BiskraBiskraAlgeria

Personalised recommendations