Substrate temperature-dependent properties of sprayed cobalt oxide thin films
- 17 Downloads
Abstract
Cobalt oxide (Co3O4) thin films were deposited onto amorphous glass substrates using a home-made pneumatic spray pyrolysis system (SPT) from aqueous solution of cobalt chloride salt (CoCl2) as a source of cobalt. The films were deposited at different substrate temperatures ranging from 250 to 450 °C in steps of 50 °C. The effect of substrate temperature on structural, electrical and optical properties was studied. The characterization of samples was carried out by X-ray diffraction (XRD), UV–Vis spectroscopy, energy dispersive spectroscopy (EDS), scanning electron microscopy and four probe points measurements. The XRD study showed that all the films were polycrystalline consisting of Co3O4 spinel cubic phase. The preferred orientation of the crystallites changed from (311) to (111) when the substrate temperature increases. The average calculated grain size was about 40.38 nm. Morphological studies exposed that the films surface morphology is almost homogeneous and well-covered. Peaks associated with Co and O elements are present in EDS analysis witch confirm the composition of the films. The optical transmittance and the band gaps energy increase with the increase of substrate temperature. The measured electrical conductivity at room temperature was found in the order of 10−1 (Ω cm)−1.
References
- 1.M. Rahimi-Nasrabadi, H.R. Naderi, M.S. Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci.: Mater. Electron. 28, 1877 (2017)Google Scholar
- 2.M. Aghazadeh, R. Ahmadi, D. Gharailou, M.R. Ganjali, P. Norouzi, J. Mater. Sci.: Mater. Electron. 27(8), 8623 (2016)Google Scholar
- 3.A. Louardi, T. Chtouki, A. Rmili, B. Elidrissi, H. Erguig, Int. J. Appl. Eng. Res. 11(2), 1432–1435 (2016)Google Scholar
- 4.H. Che, A. Liu, J. Hou, J. Mu, Y. Bai, S. Zhao, X. Zhang, H. He, J. Mater. Sci.: Mater. Electron. 25, 3209–3218 (2014)Google Scholar
- 5.P.N. Shelke, Y.B. Khollam, K.R. Patil, S.D. Gunjal, S.R. Jadkar, M.G. Takwale, K.C. Mohite, J. Nano-Electron. Phys. 3(1), 486–498 (2011)Google Scholar
- 6.L. Pan, Z. Zhang, Mater. Electron. 21, 1262–1269 (2010)CrossRefGoogle Scholar
- 7.A.N.C. Agbogu, A.B.C. Ekwealor, F.I. Ezema, Dig. J. Nanomater. Biostruct. 9(3), 1289–1296 (2014)Google Scholar
- 8.H.H. Daroysh, AL-Muthanna J. Pure Sci. (MJPS) 3(2), 285–294 (2016)Google Scholar
- 9.V. Patil, P. Joshi, M. Chougule, S. Sen, Nanosci. Lett. 2, 1–7 (2012)CrossRefGoogle Scholar
- 10.C.L. Liao, Y.H. Lee, S.T. Chang, K.Z. Fuang, J. Power Sources 158, 1379 (2006)CrossRefGoogle Scholar
- 11.S.Z. Abbas, A.A. Aboud, M. Irfan, S. Alam, Mater. Sci. Eng. 60, 012058 (2014)Google Scholar
- 12.L. Armelao, D. Barreca, S. Gross, A. Martucci, M. Tieto, E. Tondello, J. Non-Cryst. Solids 293–295, 477–482 (2001)CrossRefGoogle Scholar
- 13.R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Int. J. Sci. Nat. 5(4), 663–668 (2014)Google Scholar
- 14.D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Chem. Mater. 13, 588–593 (2001)CrossRefGoogle Scholar
- 15.T.AH. Abbas, L.H. Slewa, H.A. Khizir et al., J. Mater. Sci.: Mater. Electron. 28, 1951 (2017)Google Scholar
- 16.A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, G. Brahim, Optik 127, 2653–2658 (2016)CrossRefGoogle Scholar
- 17.V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252, 7487–7492 (2006)CrossRefGoogle Scholar
- 18.A. Abdelkrim, S. Rahmane, K. Nabila, A. Hafida, O. Abdelouahab, J. Mater. Sci.: Mater. Electron. 28, 4772–4779 (2017)Google Scholar
- 19.A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, H. Erguig, J. Alloys Compd. 509, 9183–9189 (2011)CrossRefGoogle Scholar
- 20.R. Manogowri, R. Mary Mathelane, S. Valanarasu, I. Kulandaisamy, A. Benazir Fathima, A. Kathalingam, J. Mater. Sci.: Mater. Electron. 27(4), 3860–3866 (2016)Google Scholar
- 21.M. Manickam, V. Ponnuswamy, C. Sankar, R. Mariappan, R. Suresh, Silicon 8(3), 351–360 (2016)CrossRefGoogle Scholar
- 22.A. Abdelkrim, S. Rahmane, O. Abdelouahab, A. Hafida, K. Nabila, Chin. Phys. B 25(4), 046801 (2016)CrossRefGoogle Scholar
- 23.A.B.C. Ekwealor, S.U. Offiah, S.C. Ezugwuand, F.I. Ezema, Indian J. Mater. Sci. 2014, 367950 (2014)Google Scholar
- 24.G.B. Williamson, R.C. Smallman, Philos. Mag. 1, 34–46 (1956)CrossRefGoogle Scholar
- 25.J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)Google Scholar
- 26.A. Lakehal, B. Bedhiaf, A. Bouaza, H. Benhebal, A. Ammaric, C. Dalache, Mater. Res. 21(3), e20170545 (2018)CrossRefGoogle Scholar
- 27.S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, Thin Solid Films 562, 70–74 (2014)CrossRefGoogle Scholar
- 28.O. Gencyılmaz, T. Taskopru, F. Atay, I. Akyuz, Appl. Phys. A 121(1), 245–254 (2015)CrossRefGoogle Scholar
- 29.S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2(3), 221–227 (2013)CrossRefGoogle Scholar
- 30.P.S. Patil, L.D. Kadam, C.D. Lokhande, Thin Solid Films 272, 29–32 (1996)CrossRefGoogle Scholar