CZTSSe absorber layer formation and impact of annealing process on its properties

  • Srinibasa Padhy
  • Vishvas Kumar
  • Udai P. SinghEmail author


In the present work, the Copper Zinc Tin Sulfur Selenium (CZTSSe) absorber layer powder was prepared by solid state reaction process using ball mill machine and subsequently the paste was prepared. The paste was deposited using doctor blade method. The deposited films were annealed via two-step and three-step annealing method. For two-step annealing, in the first step the films were first ramped to 250 °C for 10 min and in the second step the temperature was ramped to 500 °C with three different hold times (5,10 and 20 min). Similarly, for the three-step process, samples were first ramped to temperature of 250 °C for 10 min, followed by an intermediate annealing step of 300 °C (10 min) and in the final step the temperature was ramped to 500 °C with two different hold times (5 and 10 min). The goal of the present work is to investigate the effect of annealing through two-step and three-step temperature profile on the CZTSSe absorber layer properties. The films were characterized using XRD (for phase analysis), SEM (for surface morphology), EDXRF (for composition analysis), and Hall Measurement (for electrical properties). It is found that the annealing hold time at higher temperature strongly influences the formation of CZTSSe grain growth, morphology and the electrical properties.



Financial support by MNRE, New Delhi (31/13/2013-14/PVSE R&D) and DST New Delhi (DST/TMD/CER/C167(G)).The authors are thankful to Prof R K Singh IIT,BHU for Raman Measurements.


  1. 1.
    S.R. Kodigala, Thin Film Solar Cells from Earth Abundant Materials Growth and Characterization of Cu 2 (ZnSn)(SSe) 4 Thin Films and their Solar Cells, Chap. 5 Fabrication and Characterization of Cu 2 ZnSn(S 1-x Sex) 4 Thin-Film Solar Cells (Elsevier, Amsterdam, 2014), pp. 141–171Google Scholar
  2. 2.
    S. Abermann, Non-vacuum processed next generation thin film photovoltaic: towards marketable efficiency and production of CZTS based solar cells. Solar Energy 94, 37–70 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Siebentritt, S. Schorr, Kesterites—a challenging material for solar cells. Prog. Photovolt. Res. Appl. 20, 512–519 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Cao, M.S. Denny Jr., J.V. Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, H.D. Rosenfeld, K.R. Choudhury, W. Wu, High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134(38), 15644–15647 (2012)CrossRefGoogle Scholar
  6. 6.
    T.S. Shyju, S. Anandhi, R. Suriakarthick, R. Gopalakrishnan, P. Kuppusami, Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. J. Solid State Chem. 227, 165–177 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Chen, A. Walsh, J.-H. Yang, X.G. Gong, L. Sun, P.-X. Yang, J.-H. Chu, S.H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Xiea, M. Dimitrievska, X. Fontané, Y. Sánchez, S. López-Marino, V. Izquierdo-Roca, V. Bermúdez, A. Pérez-Rodrígueza, E. Saucedo, Formation and impact of secondary phases in Cu-poor Zn-rich Cu2ZnSn(S1 – ySey)4 (0 ≤ y ≤ 1) based solar cells. Solar Energy Mater. Solar Cells 140, 289–298 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Dong, T. Schnabel, E. Ahlswede, C. Feldmann, Polyol-mediated synthesis of Cu2ZnSn(S,Se)4 kesterite nanoparticles and their use in thin-film solar cells. Solid State Sci. 29, 52–57 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Woo, K. Kim, Z. Zhong, I. Kim, Y. Oh, S. Jeong, J. Moon, Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S,Se)4 solar cells without S/Se treatment. Solar Energy Mater. Solar Cells 128(2), 362–368 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Hemissi, H. Amardjia-Adnani, J.C. Plenet, B. Canut, J.M. Pelletier, Influence of annealing time on structural and electrical properties of Sb doped SnO2 films. Revue des Energies Renouvelables 10, 273–279 (2007)Google Scholar
  12. 12.
    R. Yan, L. Kang, Y. Sun, J. Zhang, Solution-processed Cu2ZnSnS4 thin film with mixed solvent and its application in superstrate structure solar cells. RSC Adv. 8, 11469–11477 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, M. Ge, Y. Yue, Y. Sun, Y. Wu, X. Chen, N. Dai, Colloidal Cu2ZnSnS4 nanocrystals generated by a facile route using ethylxanthate molecular precursors. Phys. Status Solidi RRL 5(3), 113–115 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, H. Gong, Cu2ZnSnS4 synthesized through a green and economicprocess. J. Alloys Compd. 509, 9627–9630 (2011)CrossRefGoogle Scholar
  15. 15.
    P.M.P. Saloméa, J. Malaquias, P.A. Fernandes, M.S. Ferreira, A.F. da Cunha, J.P. Leitão, J.C. Gonzálezc, F.M. Matinag, Growth and characterization of Cu2ZnSn(S,Se)4 thin films for solar cells. Solar Energy Mater. Solar Cells 101, 147–153 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Chen, C. Yuan, J. Liu, Y. Deng, G. Jiang, W. Liu, C. Zhu, Low cost preparation of Cu2ZnSnS4 and Cu2ZnSn(SxSe1–x)4 from binary sulfide nanoparticles for solar cell application. J. Power Sources 262, 201–206 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Patel, I. Mukhopadhyay, A ray structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J. Phys. D 45, 445103 (2012)CrossRefGoogle Scholar
  18. 18.
    M.Z. Ansari, N. Khare, Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition. J. Phys. D 47(18), 185101 (2014)CrossRefGoogle Scholar
  19. 19.
    P.A. Fernandes, P.M.P. Salom´e, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600–7606 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, Y. Shu, J. Liu, H. Yan, M. Zhua, W.M. Lauc, Novel non-hydrazine solution processing of earthabundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells. J. Mater. Chem. A 1, 6880 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Grenet, S. Bernardi, D. Kohen, C. Lepoittevin, S. Noel, N. Karst, A. Brioude, S. Perraud, H. Mariette, Surfactant-tuned phase structure and morphologies of Cu2ZnSnS4 hierarchical microstructures and their visible-light photocatalytic activities. Solar Energy Mater. Solar Cells 101, 11–14 (2012)CrossRefGoogle Scholar
  22. 22.
    W. Yang, H.S. Duan, B. Bob, H. Zhou, B. Lei, C.H. Chung, S.H. Li, W.W. Hou, Y. Yang, Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells. Adv. Mater. 24, 6323–6329 (2012)CrossRefGoogle Scholar
  23. 23.
    F. Lopez-vergara, A. Galdamez, P. Barahona, V. Manriquez, Effect of the selenium content in the optical properties of the kesterite Cu2ZnSnS4 – x Sex phases. J. Chil. Chem. Soc. 61(4), 3291–3294 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Pani, S. Pillai, U.P. Singh, Kesterite based thin film absorber layers from ball milled precursors. J. Mater. Sci. 27(12), 12412–12417 (2016)Google Scholar
  25. 25.
    Z.H. Zhou, Y.Y. Wang, D. Xu, Y.F. Zhang, Fabrication of Cu2ZnSnS4 screenprinted layers for solar cells. Solar Energy Mater. Solar Cells 94, 2042–2045 (2010)CrossRefGoogle Scholar
  26. 26.
    F. Werner, Hall measurements on low-mobility thin films. J. Appl. Phys. 122, 135306 (2017)CrossRefGoogle Scholar
  27. 27.
    O. Vigil-Galán, M. Courel, M. Espindola-Rodriguez, D. Jiménez-Olarte, M. Aguilar-Frutis, E. Saucedo, Electrical properties of sprayed Cu2ZnSnS4 thin films and its relation with secondary phase formation and solar cell performance. Solar Energy Mater. Solar Cells 132, 557–562 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Srinibasa Padhy
    • 1
  • Vishvas Kumar
    • 1
  • Udai P. Singh
    • 1
    Email author
  1. 1.School of Electronics EngineeringKIIT (DU)BhubaneswarIndia

Personalised recommendations