Advertisement

Low-temperature-dependent growth of titanium dioxide nanorod arrays in an improved aqueous chemical growth method for photoelectrochemical ultraviolet sensing

  • M. M. Yusoff
  • M. H. MamatEmail author
  • A. S. Ismail
  • M. F. Malek
  • A. S. Zoolfakar
  • A. B. Suriani
  • M. K. Ahmad
  • N. Nayan
  • I. B. Shameem Banu
  • M. Rusop
Article

Abstract

The growth of titanium dioxide nanorod arrays (TNAs) in aqueous solutions containing titanium butoxide and hydrochloric acid can be controlled by regulating the temperature from 115 to 150 °C as an adjustable physical parameter. The transparent colloidal solution of titanates is clouded on the basic growth of TNAs when heated at a certain temperature using an improved aqueous chemical growth method in a clamped Schott bottle. The structural, optical and electrical properties of grown TNAs films were thoroughly investigated and discussed. The distinct and high-intensity peaks observed in the X-ray diffraction pattern and Raman spectra of the grown TNAs show the rutile phase with high crystal quality. The crystallite size, diameter size, and thickness of TNAs decrease with decreasing growth temperature. The prepared TNAs were used to detect 365 nm ultraviolet (UV) photon energy (750 µW/cm2) in a photoelectrochemical cell structure with a maximum photocurrent of 26.31 µA and minimum photocurrent of 3.48 µA recorded for TNAs grown at 150 °C and 115 °C, respectively. The size, structural properties, charge transfer resistance, and electron lifetime play a key role in determining the UV sensing characteristics of the TNAs. Results show that TNAs are very promising in fabricating a UV sensor with a high response at 0 V bias even at a low growth temperature of 115 °C.

Notes

Acknowledgements

This work was supported by the ASEAN-India Research & Training Fellowship Scheme (IMRC/AISTDF/R&D/P-1/2017). The authors also would like to thank the Institute of Research Management and Innovation (IRMI) of UiTM and the International Islamic University Malaysia (IIUM) for their financial support of this research.

References

  1. 1.
    M. Zhang, D. Li, J. Zhou, W. Chen, S. Ruan, Ultraviolet detector based on TiO2 nanowire array–polymer hybrids with low dark current. J. Alloy. Compd. 618, 233–235 (2015)CrossRefGoogle Scholar
  2. 2.
    H.Y. Yang, X.-L. Cheng, X.-F. Zhang, Z.-K. Zheng, X.-F. Tang, Y.-M. Xu, S. Gao, H. Zhao, L.-H. Huo, A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays. Sens. Actuator B 205, 322–328 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro–mesoporous TiO2–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590–596 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Chen, D.W. Goodman, Catalytically active gold on ordered titania supports. Chem. Soc. Rev. 37, 1860–1870 (2008)CrossRefGoogle Scholar
  5. 5.
    K.-I. Tanaka, H. He, Y. Yuan, Catalytic oxidation of CO on metals involving an ionic process in the presence of H2O: the role of promoting materials. RSC Adv. 5, 949–959 (2015)CrossRefGoogle Scholar
  6. 6.
    Q. Yue, J. Duan, L. Zhu, K. Zhang, J. Zhang, H. Wang, Effect of HCl etching on TiO2 nanorod-based perovskite solar cells. J. Mater. Sci. 53, 15257–15270 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, X. Gu, R. He, L. Zhu, Y. Qiang, Influence of annealing ambient on the photoelectric and photoelectrochemical properties of TiO2 nanorod arrays. J. Electron. Mater. 47, 5251–5258 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Choi, H. Ryu, W.-J. Lee, Study of the morphological, optical, structural and photoelectrochemical properties of TiO2 nanorods grown with various precursor concentrations. Electron. Mater. Lett. 13, 497–504 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Wang, S. Estradé, Y. Lin, F. Yu, L. Lopez-Conesa, H. Zhou, S.K. Gurram, F. Peiró, Z. Fan, H. Shen, L. Schaefer, G. Braeuer, A. Waag, Enhanced photoelectrochemical behavior of H-TiO2 nanorods hydrogenated by controlled and local rapid thermal annealing. Nanoscale Res. Lett. 12, 336 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Yan, Y. Zhuang, Y. Jiang, W. Xu, Y. Chen, J. Tu, X. Wang, Q. Wu, Enhanced photoeletrochemical biosensing performance from rutile nanorod/anatase nanowire junction array. Appl. Surf. Sci. 458, 382–388 (2018)CrossRefGoogle Scholar
  11. 11.
    L. He, Q. Liu, S. Zhang, X. Zhang, C. Gong, H. Shu, G. Wang, H. Liu, S. Wen, B. Zhang, High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application. Electrochem. Commun. 94, 18–22 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Yanru, W. Lin, L. Qinghao, C. Yanxue, Y. Shishen, J. Jun, L. Guolei, M. Liangmo, High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays. Nanotechnology 25, 075202 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, J. Jiao, A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 188 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Zu, H. Wang, G. Yi, Z. Zhang, X. Jiang, J. Gong, H. Luo, Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays. Synth. Met. 200, 58–65 (2015)CrossRefGoogle Scholar
  15. 15.
    C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, UV sensor based on TiO2 nanorod arrays on FTO thin film, Sens. Actuator B 156, 114–119 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Li, Y. Zhu, X. Lu, M. Wei, W. Zhuang, Z. Yang, X. Feng, Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance. Chem. Commun. 48, 11525–11527 (2012)CrossRefGoogle Scholar
  17. 17.
    A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000)CrossRefGoogle Scholar
  18. 18.
    B. van der Zanden, A. Goossens, The nature of electron migration in dye-sensitized nanostructured TiO2. J. Phys. Chem. B 104, 7171–7178 (2000)CrossRefGoogle Scholar
  19. 19.
    D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, High-performance self-powered UV detector based on SnO2-TiO2 nanomace arrays. Nanoscale Res. Lett. 13, 92 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, Visible-blind quasi-solid-state UV detector based on SnO2-TiO2 nanoheterostructure arrays. J. Alloy. Compd. 751, 56–61 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, M. Zu, S. Li, T. Butburee, L. Wang, F. Peng, S. Zhang, Dual modification of TiO2 nanorods for selective photoelectrochemical detection of organic compounds. Sens. Actuator B 250, 307–314 (2017)CrossRefGoogle Scholar
  22. 22.
    P. Yan, Y. Wu, G. Liu, A. Li, H. Han, Z. Feng, J. Shi, Y. Gan, C. Li, Enhancing photoresponsivity of self-powered UV photodetectors based on electrochemically reduced TiO2 nanorods. RSC Adv. 5, 95939–95942 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69–74 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Rajabi, S. Shogh, A. Iraji zad, Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy. J. Lumin. 157, 235–242 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Wu, S. Lo, K. Song, B.K. Vijayan, W. Li, K.A. Gray, V.P. Dravid, Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. J. Mater. Res. 26, 1646–1652 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Xie, L. Wei, Q. Li, Y. Chen, H. Liu, S. Yan, J. Jiao, G. Liu, L. Mei, A high performance quasi-solid-state self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale 6, 9116–9121 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Zhao, S. Yao, M. Wang, B. Wang, P. Sun, F. Liu, X. Liang, Y. Sun, G. Lu, High-efficiency dye-sensitized solar cells with hierarchical structures titanium dioxide to transfer photogenerated charge. Electrochim. Acta 170, 276–283 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663–671 (1995)CrossRefGoogle Scholar
  30. 30.
    B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  31. 31.
    S.S. Pradhan, S.K. Pradhan, V. Bhavanasi, S. Sahoo, S.N. Sarangi, S. Anwar, P.K. Barhai, Low temperature stabilized rutile phase TiO2 films grown by sputtering. Thin Solid Films 520, 1809–1813 (2012)CrossRefGoogle Scholar
  32. 32.
    V. Jordan, U. Javornik, J. Plavec, A. Podgornik, A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 24216 (2016)CrossRefGoogle Scholar
  33. 33.
    J.E. House, K.A. House, Descriptive Inorganic Chemistry, 2nd edn. (Elsevier Inc, Oxford, 2010)Google Scholar
  34. 34.
    M. Gopal, W.J. Moberly Chan, L.C. De Jonghe, Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001–6008 (1997)CrossRefGoogle Scholar
  35. 35.
    B.S. Buyuktas, Investigation of the complexation and hydrolysis–condensation of titanium(IV) n-butoxide [Ti(OBun)4] with some unsaturated mono and dicarboxylic acids. Trans. Met. Chem. 31, 786–791 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988)CrossRefGoogle Scholar
  37. 37.
    J.-P. Jolivet, M. Henry, J. Livage, Metal Oxide Chemistry and Synthesis (Wiley, Chichester, 2000)Google Scholar
  38. 38.
    M. Henry, J.-P. Jolivet, J. Livage, Aqueous Chemistry of Metal Cations: Hydrolysis, Condensation and Complexation (Springer, Berlin, 1992)Google Scholar
  39. 39.
    J. Su, L. Guo, High aspect ratio TiO2 nanowires tailored in concentrated HCl hydrothermal condition for photoelectrochemical water splitting. RSC Adv. 5, 53012–53018 (2015)CrossRefGoogle Scholar
  40. 40.
    V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv. Funct. Mater. 21, 3744–3752 (2011)CrossRefGoogle Scholar
  41. 41.
    Y. Shao, D. Tang, J. Sun, Y. Lee, W. Xiong, Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique. China Part. 2, 119–123 (2004)CrossRefGoogle Scholar
  42. 42.
    M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md, S.B. Sin, M. Abd Hamid, Rusop, Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (0 0 2) orientation enhances the final properties. J. Alloy. Compd. 582, 12–21 (2014)CrossRefGoogle Scholar
  43. 43.
    L. Miao, S. Tanemura, Y. Kondo, M. Iwata, S. Toh, K. Kaneko, Microstructure and bactericidal ability of photocatalytic TiO2 thin films prepared by rf helicon magnetron sputtering. Appl. Surf. Sci. 238, 125–131 (2004)CrossRefGoogle Scholar
  44. 44.
    A.M. Selman, Z. Hassan, Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal–semiconductor–metal UV detector based on Si substrate. Superlattices Microstruct. 83, 549–564 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Meng, H. Chen, C. Li, M.P. dos Santos, Growth of the [110] oriented TiO2 nanorods on ITO substrates by sputtering technique for dye-sensitized solar cells. Front. Mater. 1, 14 (2014)CrossRefGoogle Scholar
  46. 46.
    C.V. Thompson, Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)CrossRefGoogle Scholar
  47. 47.
    M. Ye, D. Zheng, M. Lv, C. Chen, C. Lin, Z. Lin, Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells. Adv. Mater. 25, 3039–3044 (2013)CrossRefGoogle Scholar
  48. 48.
    F. Shao, J. Sun, L. Gao, S. Yang, J. Luo, Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells. J. Mater. Chem. 22, 6824–6830 (2012)CrossRefGoogle Scholar
  49. 49.
    M.J. Alam, D.C. Cameron, Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. J. Vac. Sci. Technol. A 19, 1642–1646 (2001)CrossRefGoogle Scholar
  50. 50.
    M. Zhang, M. Zhang, S. Shi, X. Song, Z. Sun, An approach toward TiO2 nanostructure growth with tunable properties: influence of reaction time in a hydrothermal process. J. Alloy. Compd. 591, 213–217 (2014)CrossRefGoogle Scholar
  51. 51.
    P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548, 241–246 (2013)CrossRefGoogle Scholar
  52. 52.
    C.R. Aita, Raman scattering by thin film nanomosaic rutile TiO2. Appl. Phys. Lett. 90, 213112 (2007)CrossRefGoogle Scholar
  53. 53.
    X. Shen, J. Zhang, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile. J. Hazard. Mater. 192, 651–657 (2011)CrossRefGoogle Scholar
  54. 54.
    Q. Gao, X. Wu, Y. Fan, X. Zhou, Low temperature synthesis and characterization of rutile TiO2-coated mica–titania pigments. Dyes Pigm. 95, 534–539 (2012)CrossRefGoogle Scholar
  55. 55.
    S.-M. Oh, T. Ishigaki, Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma. Thin Solid Films 457, 186–191 (2004)CrossRefGoogle Scholar
  56. 56.
    V. Swamy, Size-dependent modifications of the first-order Raman spectra of nanostructured rutile TiO2. Phys. Rev. B 77, 195414 (2008)CrossRefGoogle Scholar
  57. 57.
    D. Wang, J. Zhao, B. Chen, C. Zhu, Lattice vibration fundamentals in nanocrystalline anatase investigated with Raman scattering. J. Phys. Condes. Matter 20, 085212 (2008)CrossRefGoogle Scholar
  58. 58.
    W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D 33, 912 (2000)CrossRefGoogle Scholar
  59. 59.
    S.S. Mali, C.S. Shim, H. Kim, C.K. Hong, Single step synthesized 1D TiO2 vertically aligned nanorod arrays for CdS sensitized quantum dot sensitized solar cells. Ceram. Int. 42, 1973–1981 (2016)CrossRefGoogle Scholar
  60. 60.
    N.J. Kim, Y.H. La, S.H. Im, B.K. Ryu, Optical and structural properties of Fe–TiO2 thin films prepared by sol–gel dip coating. Thin Solid Films 518, 156–160 (2010)CrossRefGoogle Scholar
  61. 61.
    S. Sadhu, P. Poddar, Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity. J. Phys. Chem. C 118, 19363–19373 (2014)CrossRefGoogle Scholar
  62. 62.
    S. Batakrushna, P.K. Giri, I. Kenji, F. Minoru, Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures. J. Phys. D 47, 215302 (2014)CrossRefGoogle Scholar
  63. 63.
    S. Savaş, A. Aysun, S. Tülay, S. Necmi, The effects of film thickness on the optical properties of TiO2–SnO2 compound thin films. Phys. Scr. 84, 065602 (2011)CrossRefGoogle Scholar
  64. 64.
    M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condes. Matter 24, 195503 (2012)CrossRefGoogle Scholar
  65. 65.
    J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)CrossRefGoogle Scholar
  66. 66.
    Y.P. He, Z.Y. Zhang, Y.P. Zhao, Optical and photocatalytic properties of oblique angle deposited TiO2 nanorod array. J. Vac. Sci. Technol. B 26, 1350–1358 (2008)CrossRefGoogle Scholar
  67. 67.
    N.K. Allam, M.A. El-Sayed, Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: structural and optical properties. J. Phys. Chem. C 114, 12024–12029 (2010)CrossRefGoogle Scholar
  68. 68.
    N.R. Mathews, E.R. Morales, M.A. Cortés-Jacome, J.A. Toledo Antonio, TiO2 thin films–influence of annealing temperature on structural, optical and photocatalytic properties. Sol. Energy 83, 1499–1508 (2009)CrossRefGoogle Scholar
  69. 69.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 10, 135–138 (1998)CrossRefGoogle Scholar
  70. 70.
    M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, K. Hashimoto, Reversible wettability control of TiO2 surface by light irradiation. Surf. Sci. 511, 401–407 (2002)CrossRefGoogle Scholar
  71. 71.
    K. Hatta, M. Higuchi, J. Takahashi, K. Kodaira, Floating zone growth and characterization of aluminum-doped rutile single crystals. J. Cryst. Growth 163, 279–284 (1996)CrossRefGoogle Scholar
  72. 72.
    M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433 (1996)CrossRefGoogle Scholar
  73. 73.
    A. Ghasempour Ardakani, M. Pazoki, S.M. Mahdavi, A.R. Bahrampour, N. Taghavinia, Ultraviolet photodetectors based on ZnO sheets: the effect of sheet size on photoresponse properties. Appl. Surf. Sci. 258, 5405–5411 (2012)CrossRefGoogle Scholar
  74. 74.
    Z. Alaie, S. Mohammad Nejad, M.H. Yousefi, Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 29, 16–55 (2015)CrossRefGoogle Scholar
  75. 75.
    B. Yuan, X.J. Zheng, Y.Q. Chen, B. Yang, T. Zhang, High photosensitivity and low dark current of photoconductive semiconductor switch based on ZnO single nanobelt. Solid-State Electron. 55, 49–53 (2011)CrossRefGoogle Scholar
  76. 76.
    L. Zhang, E. Reisner, J.J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 7, 1402–1408 (2014)CrossRefGoogle Scholar
  77. 77.
    T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg, Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. 20, 4233–4248 (2010)CrossRefGoogle Scholar
  78. 78.
    J.D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, J.R. Morante, The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 19, 465501 (2008)CrossRefGoogle Scholar
  79. 79.
    X. Li, C. Gao, H. Duan, B. Lu, X. Pan, E. Xie, Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy 1, 640–645 (2012)CrossRefGoogle Scholar
  80. 80.
    P.B. Patil, S.S. Mali, V.V. Kondalkar, K.V. Khot, R.M. Mane, C.K. Hong, P.S. Patil, J.H. Kim, P.N. Bhosale, An approach towards TiO2 chrysanthemum flowers with tunable properties: influence of reaction time in hydrothermal process. J. Mater. Sci. 26, 6119–6128 (2015)Google Scholar
  81. 81.
    A. Mathew, G.M. Rao, N. Munichandraiah, Effect of TiO2 electrode thickness on photovoltaic properties of dye sensitized solar cell based on randomly oriented Titania nanotubes. Mater. Chem. Phys. 127, 95–101 (2011)CrossRefGoogle Scholar
  82. 82.
    C.-P. Hsu, K.-M. Lee, J.T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, K.-C. Ho, EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53, 7514–7522 (2008)CrossRefGoogle Scholar
  83. 83.
    H. Li, Q. Yu, Y. Huang, C. Yu, R. Li, J. Wang, F. Guo, S. Jiao, S. Gao, Y. Zhang, X. Zhang, P. Wang, L. Zhao, Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8, 13384–13391 (2016)CrossRefGoogle Scholar
  84. 84.
    M. Zhu, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells. Ceram. Int. 40, 2337–2342 (2014)CrossRefGoogle Scholar
  85. 85.
    Y. Zhao, X. Gu, Y. Qiang, Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films 520, 2814–2818 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. M. Yusoff
    • 1
    • 3
  • M. H. Mamat
    • 1
    • 2
    Email author
  • A. S. Ismail
    • 1
  • M. F. Malek
    • 1
    • 2
  • A. S. Zoolfakar
    • 1
  • A. B. Suriani
    • 4
  • M. K. Ahmad
    • 5
  • N. Nayan
    • 5
  • I. B. Shameem Banu
    • 6
  • M. Rusop
    • 1
    • 2
  1. 1.NANO-ElecTronic Centre (NET), Faculty of Electrical EngineeringUniversiti Teknologi MARA (UiTM)Shah AlamMalaysia
  2. 2.NANO-SciTech Centre (NST), Institute of Science (IOS)Universiti Teknologi MARA (UiTM)Shah AlamMalaysia
  3. 3.Kulliyyah of EngineeringInternational Islamic University Malaysia (IIUM)Kuala LumpurMalaysia
  4. 4.Nanotechnology Research Centre, Faculty of Science and MathematicsUniversiti Pendidikan Sultan Idris (UPSI)Tanjung MalimMalaysia
  5. 5.Microelectronic and Nanotechnology – Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic EngineeringUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatMalaysia
  6. 6.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science & TechnologyChennaiIndia

Personalised recommendations