Advertisement

Preparation of graphene oxide-polypyrrole-polyvinylferrocene ternary nanocomposite and its resistive-switching characteristic

  • Ruyi Liu
  • Xiuyuan NiEmail author
  • Jinrui Lin
Article
  • 19 Downloads

Abstract

In this study, we synthesized a new composite material, graphene oxide (GO) nanosheets covered with polypyrrole (PPy) and polyvinylferrocene (PVfc) nanoclusters. This material was used in a nonvolatile resistive-switching memory device. The structures of the synthesized nanocomposite were analyzed by field emission scanning electron microscope, infrared spectroscopy and X-ray photoelectric spectroscopy. The results showed that polymers were in-situ grown on GO nanosheets continuously. It was found that N+ polaron was formed due to the protonic acid doping of PPy component, and ferrocenium ions were richly generated from the oxidation of PVfc component. A reversible bistable nonvolatile resistive-switching memory device with good stability and high ON/OFF current ratio was fabricated using the synthesized composite as active layer. The charge transport mechanism of different resistance states was studied using model-fitting methods.

Notes

Funding

This study was funded by Fudan University.

References

  1. 1.
    C.-Y. Lu, K.-Y. Hsieh, R. Liu, Microelectron. Eng. 86, 283 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Sheikholeslami, P.G. Gulak, Proc. IEEE 88, 667 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Lai, Electron devices meeting, IEDM’03 technical digest. IEEE Int., IEEE 10, 1 (2003)Google Scholar
  4. 4.
    M. Durlam, P.J. Naji, A. Omair, M. DeHerrera, J. Calder, J.M. Slaughter, B.N. Engel, N.D. Rizzo, G. Grynkewich, B. Butcher, IEEE J. Solid State Circ. 38, 769 (2003)CrossRefGoogle Scholar
  5. 5.
    S.d.Q. Liu, N. Wu, A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000)CrossRefGoogle Scholar
  6. 6.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  7. 7.
    G. Meijer, Science 319, 1625 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Tian, H.-Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T.-L. Ren, Y. Zhang, Nano Lett. 13, 651 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Lee, J. Sohn, Z. Jiang, H.-Y. Chen, H.-S.P. Wong, Nat. Commun. 6, 8407 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Liu, Y. Chen, R.W. Li, B. Zhang, E.T. Kang, C. Wang, X. Zhuang, ChemElectroChem 1, 514 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, Y. Li, J. Shi, G. Shi, S. Cao, Mater. Chem. Phys. 142, 626 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Li, S. Long, Y. Liu, C. Hu, J. Teng, Q. Liu, H. Lv, J. Suñé, M. Liu, Nanoscale Res. Lett. 10, 420 (2015)CrossRefGoogle Scholar
  13. 13.
    W. Tian, X. Mao, P. Brown, G.C. Rutledge, T.A. Hatton, Adv. Funct. Mater. 25, 4803 (2015)CrossRefGoogle Scholar
  14. 14.
    S.M. Beladi-Mousavi, S. Sadaf, L. Walder, M. Gallei, C. Rüttiger, S. Eigler, C.E. Halbig, Adv. Energy Mater. 6, 1600108 (2016)CrossRefGoogle Scholar
  15. 15.
    T.-L. Choi, K.-H. Lee, W.-J. Joo, S. Lee, T.-W. Lee, M.Y. Chae, J. Am. Chem. Soc. 129, 9842 (2007)CrossRefGoogle Scholar
  16. 16.
    G. Tian, S. Qi, F. Chen, L. Shi, W. Hu, D. Wu, Appl. Phys. Lett. 98, 203302 (2011)CrossRefGoogle Scholar
  17. 17.
    Z. Yang, X. Ni, Langmuir 28, 4829 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Li, X. Ni, Mater. Lett. 62, 3066 (2008)CrossRefGoogle Scholar
  19. 19.
    X. Ma, X. Ni, Langmuir 30, 2241 (2014)CrossRefGoogle Scholar
  20. 20.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  21. 21.
    A. Hoffman, G. Mills, H. Yee, M. Hoffmann, J. Phys. Chem. 96, 5546 (1992)CrossRefGoogle Scholar
  22. 22.
    A. Hoffman, H. Yee, G. Mills, M. Hoffmann, J. Phys. Chem. 96, 5540 (1992)CrossRefGoogle Scholar
  23. 23.
    K. Kaviyarasu, C.M. Magdalane, E. Manikandan, M. Jayachandran, R. Ladchumananandasivam, S. Neelamani, M. Maaza, Int. J. Nanosci. 14, 1550007 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Yang, X. Ma, X. Ni, J. Mater. Sci. Mater. Electron. 28, 3695 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Li, X. Ni, S. Ding, J. Mater. Sci. Mater. Electron. 26, 9001 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Ai, J. Jiang, J. Mater. Sci. Mater. Electron. 21, 410 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Rosenblum, R.B. Woodward, J. Am. Chem. Soc. 80, 5443 (1958)CrossRefGoogle Scholar
  28. 28.
    Z. Guo, S. Wang, G. Wang, Z. Niu, J. Yang, W. Wu, Carbon 76, 203 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Zhuang, Y. Chen, L. Wang, K.-G. Neoh, E.-T. Kang, C. Wang, Polym. Chem. 5, 2010, (2014)CrossRefGoogle Scholar
  30. 30.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  31. 31.
    T.V. Long, F.R. Huege, Chem. Commun. 20, 1239b (1968)Google Scholar
  32. 32.
    M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, J. Phys. Chem. C 115, 19761 (2011)CrossRefGoogle Scholar
  33. 33.
    R. Hu, D. Shao, X. Wang, Polym. Chem. 5, 6207 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Herrera, T. Ichii, K. Murase, H. Sugimura, Chem. Lett. 41, 1188 (2012)CrossRefGoogle Scholar
  35. 35.
    J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Biomaterials 30, 4325 (2009)CrossRefGoogle Scholar
  36. 36.
    Z. Weng, X.Y. Ni, J. Appl. Polym. Sci. 110, 109 (2008)CrossRefGoogle Scholar
  37. 37.
    P. Bätz, D. Schmeisser, W. Göpel, Phys. Rev. B 43, 9178 (1991)CrossRefGoogle Scholar
  38. 38.
    Y. Li, X. Ni, Electrochim. Acta 227, 162 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Li, G. He, Synth. Met. 94, 127 (1998)CrossRefGoogle Scholar
  40. 40.
    B. Zhang, Y.L. Liu, Y. Chen, K.G. Neoh, Y.X. Li, C.X. Zhu, E.S. Tok, E.T. Kang, Chem. Eur. J. 17, 10304 (2011)CrossRefGoogle Scholar
  41. 41.
    Y.-C. Lai, D.-Y. Wang, I.-S. Huang, Y.-T. Chen, Y.-H. Hsu, T.-Y. Lin, H.-F. Meng, T.-C. Chang, Y.-J. Yang, C.-C. Chen, J. Mater. Chem. C 1, 552 (2013)CrossRefGoogle Scholar
  42. 42.
    G. Khurana, P. Misra, R.S. Katiyar, Carbon 76, 341 (2014)CrossRefGoogle Scholar
  43. 43.
    R. Dietmueller, H. Nesswetter, S.J. Schoell, I.D. Sharp, M. Stutzmann, ACS Appl. Mater. Interfaces 3, 4286 (2011)CrossRefGoogle Scholar
  44. 44.
    S.O. Oseni, K. Kaviyarasu, M. Maaza, G. Sharma, G. Pellicane, G.T. Mola, J. Alloys Compd. 748, 216 (2018)CrossRefGoogle Scholar
  45. 45.
    G.T. Mola, S.O. Oseni, K. Kaviyarasu, M. Maaza, Mater. Today Proc. 4, 12558e, (2017)CrossRefGoogle Scholar
  46. 46.
    I. Langmuir, Rev. Mod. Phys. 3, 450 (1931)CrossRefGoogle Scholar
  47. 47.
    H. Chang, Z. Sun, M. Saito, Q. Yuan, H. Zhang, J. Li, Z. Wang, T. Fujita, F. Ding, Z. Zheng, ACS Nano 7, 6310 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Li, R. Qian, Synth. Met. 53, 149 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations