Prussian blue derived metal oxides/graphene foam as anode materials for high-performance lithium-ion batteries

  • Jinxiao Shao
  • Jianhui Feng
  • Meizhou Zhu
  • Hu ZhouEmail author
  • Aihua YuanEmail author


Metal oxides have received much attention recently in the field of lithium-ion batteries (LIBs) because of high specific capacities. The combination between metal oxides and carbonaceous materials is an effective approach to improve the LIBs properties. In this contribution, Prussian blue (PB) particles with two different morphologies were loaded on the surface of graphene foam (GF) by a solution impregnation method, and then the Fe2O3/GF composites were obtained after the calcination of PB/GF precursors. The as-prepared Fe2O3/GF products exhibit superior electrochemical properties towards LIBs, and the specific capacity of 645 mA h g−1 can be obtained at 100 mA g−1 even after 200 cycles. The outstanding LIBs performance for the composite can be attributed to the synergistic effect between GF and metal oxides, in which Fe2O3 contributes a high specific capacity, whereas GF improves the electrical conductivity and cycle stability. The relationship between the morphologies of metal oxides and lithium storage properties was also investigated.



This work was financially supported by the National Natural Science Foundation of China (51672114), Natural Science Foundation of Jiangsu Province, China (BK20151328, BK20161357), Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology, China (HZ20180004), and the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Supplementary material

10854_2018_367_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1028 KB)


  1. 1.
    M. Li, J. Lu, Z.W. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018)CrossRefGoogle Scholar
  2. 2.
    J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Tabassum, R. Zou, A. Mahmood, Z.B. Liang, Q.F. Wang, H. Zhang, S. Gao, C. Qu, W.H. Guo, S.J. Guo, A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 30, 1705441 (2018)CrossRefGoogle Scholar
  4. 4.
    B.Y. Guan, X.Y. Yu, H.B. Wu, X.W.D. Lou, Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29, 1703614 (2017)CrossRefGoogle Scholar
  5. 5.
    S.S. Zheng, X.R. Li, B.Y. Yan, Q. Hu, Y.X. Xu, X. Xiao, H.G. Xue, H. Pang, Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 7, 1602733 (2017)CrossRefGoogle Scholar
  6. 6.
    W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015)CrossRefGoogle Scholar
  7. 7.
    J.P. Wang, H. Zhou, M.Z. Zhu, A.H. Yuan, X.P. Shen, Metal-organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries. J. Alloy. Compd. 744, 220–227 (2018)CrossRefGoogle Scholar
  8. 8.
    J.W. Nai, X.W.D. Lou, Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. (2018). Google Scholar
  9. 9.
    D. Aguila, Y. Prado, E.S. Koumousi, C. Mathoniere, R. Clerac, Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016)CrossRefGoogle Scholar
  10. 10.
    G.Z. Fang, J. Zhou, C.W. Liang, A.Q. Pan, C. Zhang, Y. Tang, X.P. Tan, J. Liu, S.Q. Liang, MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Huang, F.F. Zhang, X.C. Du, Y.L. Qin, D.M. Yin, L.M. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9, 1592–1599 (2015)CrossRefGoogle Scholar
  12. 12.
    G.H. Zhang, S.C. Hou, H. Zhang, W. Zeng, F.L. Yan, C.C. Li, H.G. Duan, High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405 (2015)CrossRefGoogle Scholar
  13. 13.
    T.C. Jiang, F.X. Bu, X.X. Feng, I. Shakir, G.L. Hao, Y.X. Xu, Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140–5147 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Ji, H. Zhou, Y.L. Tong, J.P. Wang, M.Z. Zhu, T.H. Chen, A.H. Yuan, Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 313, 1623–1632 (2017)CrossRefGoogle Scholar
  15. 15.
    J.X. Shao, H. Zhou, M.Z. Zhu, J.H. Feng, A.H. Yuan, Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. J. Alloy. Compd. 768, 1049–1057 (2018)CrossRefGoogle Scholar
  16. 16.
    W. Wen, J.M. Wu, Y.Z. Jiang, L.L. Lai, J. Song, Pseudocapacitance-enhanced Li-ion microbatteries derived by a TiN@TiO2 nanowire anode. Chem 2, 404–416 (2017)CrossRefGoogle Scholar
  17. 17.
    M.Z. Zhu, H. Zhou, J.X. Shao, J.H. Feng, A.H. Yuan, Prussian blue nanocubes supported on graphene foam as superior binder-free anode of lithium-ion batteries. J. Alloy. Compd. 749, 811–817 (2018)CrossRefGoogle Scholar
  18. 18.
    D. Ji, H. Zhou, J. Zhang, Y.Y. Dan, H.X. Yang, A.H. Yuan, Facile synthesis of metal-organic framework-derived Mn2O3 nanowires coated three-dimensional graphene network for highperformance free-standing supercapacitor electrodes. J. Mater. Chem. A 4, 8283–8290 (2016)CrossRefGoogle Scholar
  19. 19.
    J.C. Pramudita, S. Schmid, T. Godfrey, T. Whittle, M. Alam, T. Hanley, H.E.A. Brand, N. Sharma, Sodium uptake in cell construction and subsequent in operando electrode behaviour of Prussian blue analogues, Fe[Fe(CN)6]1–x·yH2O and FeCo(CN)6. Phys. Chem. Chem. Phys. 16, 24178–24187 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Shen, Z.X. Wang, L.Q. Chen, Prussian blues as a cathode material for lithium ion batteries. Chem. Eur. J. 20, 12559–12562 (2014)CrossRefGoogle Scholar
  21. 21.
    J.B. Ayers, W.H. Piggs, Synthesis and properties of two series of heavy metal hexacyanoferrates. J. Inorg. Nucl. Chem. 33, 721–733 (1971)CrossRefGoogle Scholar
  22. 22.
    R.E. Wilde, S.N. Ghosh, B. Marshall, Prussian blues. Inorg. Chem. 9, 2512–2516 (1970)CrossRefGoogle Scholar
  23. 23.
    K. Itaya, I. Uchida, V.D. Neff, Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19, 162–168 (1986)CrossRefGoogle Scholar
  24. 24.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)CrossRefGoogle Scholar
  25. 25.
    P. Bhattacharya, M. Kota, D.H. Suh, K.C. Roh, H.S. Park, Biomimetric spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes. Adv. Energy Mater. 7, 1700331 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Qi, H.B. Zhang, J. Xu, X. Wu, D. Yang, J. Qu, Z.Z. Yu, Highly-quality graphene sheets and sandwich-structured alpha-Fe2O3/graphene hybrids for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 11025–11034 (2017)CrossRefGoogle Scholar
  27. 27.
    R. Mohan, R. Paulose, An efficient electrochemical performance of Fe2O3/CNT nanocomposite coated dried Lagenaria siceraria shell electrode for electrochemical capacitor. Ceram. Int. 44, 10990–10993 (2018)CrossRefGoogle Scholar
  28. 28.
    S.K. Patel, S.H. Choi, Y.C. Kang, J.K. Lee, Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8, 6728–6738 (2016)CrossRefGoogle Scholar
  29. 29.
    J.X. Zhu, Z.Y. Yin, D. Yang, T. Sun, H. Yu, H.E. Hoster, H.H. Hng, H. Zhang, Q.Y. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 6, 987 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Jin, L.Y. Dang, H. Zhang, C. Song, Q.Y. Lu, F. Gao, Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances. Chem. Eng. J. 326, 292–297 (2017)CrossRefGoogle Scholar
  31. 31.
    J.K. Meng, L. Fu, Y.S. Liu, G.P. Zheng, X.C. Zheng, X.X. Guan, J.M. Zhang, Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersed α-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries. Electrochim. Acta 224, 40–48 (2017)CrossRefGoogle Scholar
  32. 32.
    J.S. Luo, J.L. Liu, Z.Y. Zeng, C.F. Ng, L.J. Ma, H. Zhang, J.Y. Lin, Z.X. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13, 6136–6143 (2013)CrossRefGoogle Scholar
  33. 33.
    W.T. Qiu, M.S. Balogun, Y. Luo, K.Q. Chen, Y.K. Zhu, X.J. Xiao, X.H. Lu, P. Liu, Y.X. Tong, Three-dimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim. Acta 193, 32–38 (2016)CrossRefGoogle Scholar
  34. 34.
    F.N. Lin, H. Wang, G. Wang, Facile synthesis of hollow polyhedral (cubic, octahedral and dodecahedral) NiO with enhanced lithium storage capabilities. Electrochim. Acta 211, 207–216 (2016)CrossRefGoogle Scholar
  35. 35.
    R.M. Gao, Z. Jiao, Y. Wang, L.Q. Xu, S.S. Xia, H.J. Zhang, Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries. Chem. Eng. J. 304, 156–164 (2016)CrossRefGoogle Scholar
  36. 36.
    C. Wang, Q. Li, F.F. Wang, G.F. Xia, R.Q. Liu, D.Y. Li, N. Li, J.S. Spendelow, G. Wu, Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Int. 6, 1243–1250 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  3. 3.Marine Equipment and Technology InstituteJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations