Advertisement

Structural and magnetic properties of CoMn2O4 synthesized by auto combustion method

  • Rajeesh Kumar Narayanan Kutty
  • Palanisamy Rupa Kasturi
  • Jaya Jaganath
  • Saravanan Padmanapan
  • Yun Sung Lee
  • Danielle Meyrick
  • Ramakrishnan Kalai SelvanEmail author
Article
  • 54 Downloads

Abstract

Combustion synthesized cobalt manganite (CMO) was systematically studied for its structural and magnetic properties. X-ray diffraction (XRD) pattern with high-intensity peaks at appropriate positions revealed the formation of phase pure and highly crystalline CMO. The distorted tetragonal structure of the CMO unit cell suggested the presence of high spin (d4) Jahn–Teller Mn3+ ions. X-ray photoelectron spectra (XPS) supported a mixed spinel with Co2+, Co3+, Mn2+ and Mn3+ cations. Electron microscopy confirmed the formation of submicron-sized CMO particles with well-defined lattice fringes, while low-temperature magnetic investigations revealed that the prepared CMO as a ferrimagnetic spinel due to the presence of uncompensated electronic states. The observed unsaturated magnetization, even at large applied fields, confirmed the high degree of spin-canting due to the existence of Yafet–Kittel spin arrangement.

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2011-C1AAA0010030538).

References

  1. 1.
    M. Iizumi, F. Koetzle, G. Shirane, S. Chikazumi, M. Matsui, S. Todo, Structure of magnetite (Fe3O4) below Verwey transition temperature. Acta Cryst. B 38, 2121 (1982)CrossRefGoogle Scholar
  2. 2.
    A.P. Ramirez, Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453 (1994)CrossRefGoogle Scholar
  3. 3.
    B. Chardon, F. Vigneron, Mn3O4 commensurate and incommensurate magnetic structures. J. Mag. Mag. Mat. 58, 128 (1986)CrossRefGoogle Scholar
  4. 4.
    Y. Ying, L. Wang, W. Li, L. Qiao, J. Zheng, J. Yu, W. Cai, L. Jiang, S. Che, L. Zhang, L. Ling, Spin glass in a geometrically frustrated magnet of ZnFe2O4 nanoparticles. J. Supercond. Nov. Magn. 31, 3553 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Pal, S. Lal, Orbital and spin ordering physics of the Mn3O4 spinel. Phys. Rev. B 96, 0751391 (2017)Google Scholar
  6. 6.
    R. Tackett, G. Lawes, B.C. Melot, M. Grossman, E.S. Toberer, R. Seshadri, Magnetodielectric coupling in Mn3O4. Phys. Rev. B 76, 024409 (2007)CrossRefGoogle Scholar
  7. 7.
    W.H. Bragg, The structure of the spinel group the crystals. Philos. Mag. 6, 305 (1915)CrossRefGoogle Scholar
  8. 8.
    S. Nishikawa, Structure of some crystals of spinel group. J. Mat. Phy. Soc. Japan 8, 199 (1915)Google Scholar
  9. 9.
    A.H. Morrish, The Physical Principles of Magnetism (Wiley-IEEE Press, New York, 2001)CrossRefGoogle Scholar
  10. 10.
    L.M. Neel, Properietes magnetiques des ferrites; ferrimagnetism et antiferromagnetism. Ann. Phys. 12, 137 (1948)CrossRefGoogle Scholar
  11. 11.
    K. Dwight, N. Menyuk, Magnetic properties of Mn3O4 and the canted spin problem. Phys. Rev. 119, 1470 (1960)CrossRefGoogle Scholar
  12. 12.
    L. Nadherny, M. Marysko, D. Sedmidubsky, C. Martin, Structural and magnetic properties of ZnxMn3–xO4. J. Mag. Mag. Mat. 413, 89 (2016)CrossRefGoogle Scholar
  13. 13.
    A.B. Antunes. M. Bahout. O. Peña. B. Mehdaoui, G. Martínez, Magnetic properties of the spinel system MgxMn3-xO4. Bol. Soc. Esp. Ceram. Vidrio. 47, 143 (2008)CrossRefGoogle Scholar
  14. 14.
    B. Boucher, R. Buhl, M. Perrin, Magnetic structure of cobalt manganite by neutron diffraction. J.Appl. Phys. 39, 632 (1968)CrossRefGoogle Scholar
  15. 15.
    V. Baron, J. Gutzmer, H. Rundolf, R. Tellgren, The influence of iron substitution on the magnetic properties of hausmannite, Mn2+(Fe, Mn)2 3+O4. Am. Mineral 83, 786 (1998)CrossRefGoogle Scholar
  16. 16.
    S. Nepal, Q. Zhang, S. Dai, W. Tin, S.E. Nagler, R. Jin, Structural and magnetic transitions in spinel FeMn2O4 single crystals. Phys. Rev. B 97, 024410 (2018)CrossRefGoogle Scholar
  17. 17.
    G.T. Bhandage, H.V. Keer, Magnetic properties of ZnMn2O4–NiMn2O4 system. J. Phys. C: Solid State Phys. 11, L219 (1978)CrossRefGoogle Scholar
  18. 18.
    H.T. Zhang, X.H. Chen, Size-dependent X-ray photoelectron spectroscopy and complex magnetic properties of CoMn2O4 spinel. Nanotechnology 17, 1384 (2006)CrossRefGoogle Scholar
  19. 19.
    J. Habjanic, M. Juric, J. Popovic, J. Molcanov, D. Pajic, 3D oxalate- based network as a precursor for the CoMn2O4 spinel: synthesis and structural and magnetic properties. Inorg. Chem. 53, 9633 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Popovic, M. Juric, D. Pajic, M. Vrankic, J. Zavasnik, J. Habjanic, Effect of cation distribution and microstructure on the magnetic behavior of the CoMn2O4 oxide. Inorg. Chem. 56, 3983 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Mahata, D. Sarma, C. Madhu, A. Sundaresan, S. Natarajan, CoMn2O4 spinel from a MOF: synthesis, structural and magnetic studies. Dalton Trans. 40, 1952 (2011)CrossRefGoogle Scholar
  22. 22.
    K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update. Curr. Opin. Sol. Stat. Mat. Sci. 6, 507 (2002)CrossRefGoogle Scholar
  23. 23.
    J.B. Goodenough, A.L. Loeb, Theory of Ionic ordering, crystal distortion and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98, 391 (1955)CrossRefGoogle Scholar
  24. 24.
    J.D. Dunitz, L.E. Orgel, Electronic properties of transition metal oxides. J. Phys. Chem. Solids 3, 20 (1957)CrossRefGoogle Scholar
  25. 25.
    F. Bosi, U. Helenius, H. Skogby, Crystal chemistry of MgAl2O4–MgMn2O4–MnMn2O4: analysis of structural distortion in spinel- and hausmannite-type structures. Am. Mineral 95, 602 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Li, S. Xiong, X. Lia, Y. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. J. Nanoscale 5, 2045 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Yang, X. Xu, W. Yan, H. Yanga, S. Ding, Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in Lithium ion batteries. Electrochim. Acta 137, 462 (2014)CrossRefGoogle Scholar
  28. 28.
    T.Y. Ma, Y. Zheng, S. Dai, M. Jaroniec, S.Z. Qiao, Mesoporous, MnCo2O4 with abundant oxygen vacancy defects as high performance oxygen reduction catalysts. J. Mater. Chem. A 2, 8676 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Vigneshwaran, M. Kandiban, N. Senthil Kumar, V. Venkatachalam, R. Jayavel, Vetha Potheher I study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 27, 4653 (2016)Google Scholar
  30. 30.
    M.S. Park, J. Kim, K.J. Kim, J.W. Lee, J.H. Kim, Y. Yamauchi, Porous nanoarchitectures. Phys. Chem. Chem. Phys. 17, 30963 (2015)CrossRefGoogle Scholar
  31. 31.
    I.S. Jacobs, Evidence for triangular moment arrangements in MO·Mn2O3. J. Appl. Phys. 30, 301S (1959)CrossRefGoogle Scholar
  32. 32.
    G. Srinivasan, M.S. Seeehra, Magnetic properties of Mn3O4 and a solution of canted spin problem. Phys. Rev. B 28, 1 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rajeesh Kumar Narayanan Kutty
    • 1
  • Palanisamy Rupa Kasturi
    • 1
  • Jaya Jaganath
    • 1
  • Saravanan Padmanapan
    • 2
  • Yun Sung Lee
    • 3
  • Danielle Meyrick
    • 4
  • Ramakrishnan Kalai Selvan
    • 1
    Email author
  1. 1.Energy Storage and Conversion Devices Laboratory, Department of PhysicsBharathiar UniversityCoimbatoreIndia
  2. 2.Defence Metallurgical Research LaboratoryHyderabadIndia
  3. 3.Faculty of Applied Chemical EngineeringChonnam National UniversityGwangjuSouth Korea
  4. 4.Theranostics AustraliaEast FremantleAustralia

Personalised recommendations