Advertisement

Enhanced crystal formation of methylammonium lead iodide via self-assembled monolayers and their solvation for perovskite solar cells

  • Kittiwut Chaisan
  • Duangmanee Wongratanaphisan
  • Supab Choopun
  • Takashi Sagawa
  • Pipat RuankhamEmail author
Article
  • 120 Downloads

Abstract

The quality of a perovskite photo-absorber layer is strongly dependent on the morphology of initially deposited PbI2 precursor film. In this work, surface modification of titanium dioxide (TiO2) substrates with self-assembled monolayers (SAMs) was performed to control the quality of the PbI2 and MAPbI3 perovskite layers. Two small organic molecules, each with a different backbone, 3-aminopropanoic acid (APA) and 4-aminobenzoic acid (ABA), were selected and their solvation effects were also investigated. Small homogeneously distributed cracks were found in the PbI2 film produced from the modification with APA molecules in demethyl sulfoxide or ethanol solution, whereas films produced from modification with ABA molecules showed different effects. These small cavities act as pathway for MAI intercalation and facilate PbI2-to-MAPbI3 conversion, leading to PbI2-free perovskite film. The different morphologies were caused by different adsorption behaviors of each SAM on the TiO2 surface. APA molecules interact with the hydroxyl groups of TiO2 while ABA molecules do not. Therefore, with APA treatment, the perovskite solar cells showed improvements in power conversion efficiency in comparison to either the devices without surface modification or ones treated with ABA molecules. The reasons behind the enhancement are attributed to longer charge carrier lifetime and better charge transfer at the TiO2/APA/perovskite interface. The results imply that the choice selected for SAMs and their solvents are crucial to obtaining high quality perovskite layers and efficient perovskite solar cells.

Abbreviations

SAM

Self-assembled monolayer

ABA

4-Aminobenzoic acid

APA

3-Aminopropanoic acid

DMSO

Dimethyl sulfoxide

FT-IR

Fourier transform infrared spectroscopy

FE-SEM

Field emission scanning electron microscopy

XRD

X-ray diffraction

Jsc

Short-circuit current density

Voc

Open-circuit voltage

FF

Fill factor

PCE

Power conversion efficiency

Notes

Acknowledgements

The authors would like to thank Dr. Chawalit Bhoomanee and Mr. Anusit Kaewprajak for assistance in the device preparation and measurement. Also, we would like to thank Dr. Atipong Ngamjarurojana for assistance in photoluminescence measurement. The authors would like to extend our gratitude to Cynthia Bail for her assistance with English language editing end proofreading.

Author Contributions

PR developed the idea of the research, assisted fabrication and characterization of perovskite solar cells, analyzed data, and finalized the manuscript. KC mainly conducted the experiments, analyzed data and drafted the manuscript. DW, SC, and TS analyzed data and helped in developing the idea. All authors read and approved the final manuscript.

Funding

This research was financially supported by the Thailand Research Fund (TRF) (Grant No. MRG6080006). This work was also partially supported by Chiang Mai University, Thailand.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    Y. Hou, J. Yang, Q. Jiang, W. Li, Z. Zhou, X. Li, S. Zhou, Enhancement of photovoltaic performance of perovskite solar cells by modification of the interface between the perovskite and mesoporous TiO2 film. Sol. Energy Mater. Sol. Cells 155, 101–107 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Hui, T. Yang, F. Bo, Y. Hui, Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. Chin. Phys. B 26(12), 128801 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, Enhanced Photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Zhang, Y. Luo, X. Chen, W. Ou-Yang, Y. Chen, Z. Sun, S. Huang, Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Appl. Surf. Sci. 388(Part A), 82–88 (2016)Google Scholar
  5. 5.
    C. Tozlu, A. Mutlu, M. Can, A.K. Havare, S. Demic, S. Icli, Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell. Appl. Surf. Sci. 422, 1129–1138 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Zuo, Q. Chen, N. De Marco, Y.-T. Hsieh, H. Chen, P. Sun, S.-Y. Chang, H. Zhao, S. Dong, Y. Yang, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells. Nano Lett. 17(1), 269–275 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Li, J. Fan, J. Li, Y. Mai, L. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137, 10399–10405 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du, J. Ni, H. Cai, J. Li, J. Zhang, Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices. Sol. Energy Mater. Sol. Cells 152, 118–124 (2016)CrossRefGoogle Scholar
  11. 11.
    W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, Surface properties of CH3NH3PbI3 for perovskite solar cells. ACC Chem. Res. 49(3), 554–561 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Ruankham, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, S. Choopun, T. Sagawa, Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl. Surf. Sci. 410, 393–400 (2017)CrossRefGoogle Scholar
  14. 14.
    M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, F. Haque, M. Wright, C. Xu, A. Uddin, Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells. Sol. Energy Mater. Sol. Cells 167, 70–86 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Wu, W. Chen, Y. Yue, J. Liu, E. Bi, X. Yang, A. Islam, L. Han, Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Appl. Mater. Interfaces 7(37), 20707–20713 (2015)CrossRefGoogle Scholar
  16. 16.
    J.-W. Lee, N.-G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40(8), 654–659 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Li, T. Zhang, Y. Zhao, Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J. Mater. Chem. A 3(39), 19674–19678 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Huang, J. Wu, D. Gao, High-efficiency perovskite solar cells based on anatase TiO2 nanotube arrays. Thin Solid Films 598, 1–5 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, K. Zhu, Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. J. Mater. Chem. A. 3(17), 9086–9091 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, J. Mao, H. He, D. Zhang, H.L. Zhu, F. Xie, K.S. Wong, M. Grätzel, W.C.H. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5(23), 1501354–1501354 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Nawaz, A.K. Erdinc, B. Gultekin, M. Tayyib, C. Zafer, K. Wang, M.N. Akram, K.K. Wong, S. Hussain, L. Schmidt-Mende, A. Fakharuddin, Insights into optoelectronic properties of anti-solvent treated perovskite films. J. Mater. Sci. Mater. Electron. 28(20), 15630–15636 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng, Y. Zhang, Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl. Mater. Interfaces 9(8), 7224–7231 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao, B. Xu, Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 121(12), 6546–6553 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng, L. Zhang, H. Han, Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137(5), 1790–1793 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Wang, Z. Zhang, Y. Cai, J. Chen, J. Wang, R. Huang, X. Lu, X. Gao, L. Shui, S. Wu, J.-M. Liu, Enhanced performance of CH3NH3PbI3−xClx perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface. Nanoscale Res. Lett. 11(1), 316 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, All-solid perovskite solar cells with HOCO-R-NH3 +I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118(30), 16651–16659 (2014)CrossRefGoogle Scholar
  28. 28.
    K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26(12), 9575–9583 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Liang, B. Peng, J. Chen, Correlating dye adsorption behavior with the open-circuit voltage of triphenylamine-based dye-sensitized solar cells. J. Phys. Chem. C 114(24), 10992–10998 (2010)CrossRefGoogle Scholar
  30. 30.
    V. Tizjang, M. Montazeri-Pour, M. Rajabi, M. Kari, S. Moghadas, Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. Mater. Electron. 26(5), 3008–3019 (2015)CrossRefGoogle Scholar
  31. 31.
    J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworths, London, 1975)Google Scholar
  32. 32.
    A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P. Orihuela, FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7(1), 49 (2017)CrossRefGoogle Scholar
  33. 33.
    M.T.S. Rosado, M.L.R.S. Duarte, R. Fausto, Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine. J. Mol. Struct. 410–411, 343–348 (1997)Google Scholar
  34. 34.
    I.T. Papadas, K.S. Subrahmanyam, M.G. Kanatzidis, G.S. Armatas, Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications. Nanoscale 7(13), 5737–5743 (2015)CrossRefGoogle Scholar
  35. 35.
    O.A. Andreeva, L.A. Burkova, I.V. Podeshvo, Fourier transform IR spectroscopic study of substituent effect in aromatic amino acids on the zwitterion–neutral molecule tautomeric equilibrium. Russ. J. Phys. Chem. B 9(6), 869–875 (2015)CrossRefGoogle Scholar
  36. 36.
    D.A. Perry, J.S. Cordova, L.G. Smith, H.-J. Son, E.M. Schiefer, E. Dervishi, F. Watanabe, A.S. Biris, Study of adsorption of aminobenzoic acid isomers on silver nanostructures by surface-enhanced infrared spectroscopy. J. Phys. Chem. C 113(42), 18304–18311 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Samsonowicz, T. Hrynaszkiewicz, R. Świsłocka, E. Regulska, W. Lewandowski, Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. J. Mol. Struct. 744–747, 345–352 (2005)CrossRefGoogle Scholar
  38. 38.
    L. Liu, K. Li, X. Chen, X. Liang, Y. Zheng, L. Li, Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study. J. Mol. Model. 24(4), 107 (2018)CrossRefGoogle Scholar
  39. 39.
    T.H. Tran, A.Y. Nosaka, Y. Nosaka, Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 110(50), 25525–25531 (2006)CrossRefGoogle Scholar
  40. 40.
    H.K. Adli, T. Harada, W. Septina, S. Hozan, S. Ito, S. Ikeda, Effects of porosity and amount of surface hydroxyl groups of a porous TiO2 layer on the performance of a CH3NH3PbI3 perovskite photovoltaic cell. J. Phys. Chem. C 119(39), 22304–22309 (2015)CrossRefGoogle Scholar
  41. 41.
    B.R. Sutherland, S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T.O. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, A.J. Houtepen, E.H. Sargent, Perovskite thin films via atomic layer deposition. Adv. Mater. 27(1), 53–58 (2015)CrossRefGoogle Scholar
  42. 42.
    I. Hwang, M. Baek, K. Yong, Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells. ACS Appl. Mater. Interfaces 7(50), 27863–27870 (2015)CrossRefGoogle Scholar
  43. 43.
    Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014)CrossRefGoogle Scholar
  44. 44.
    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016)CrossRefGoogle Scholar
  45. 45.
    V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136(51), 17730–17733 (2014)CrossRefGoogle Scholar
  46. 46.
    P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, G. Shao, Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, S. Yang, Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Mater. Chem. Front. 1(5), 802–806 (2017)CrossRefGoogle Scholar
  48. 48.
    Q. Wang, Fast voltage decay in perovskite solar cells caused by depolarization of perovskite layer. J. Phys. Chem. C 122(9), 4822–4827 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Thailand Center of Excellence in Physics (ThEP Center), CHEBangkokThailand
  3. 3.Research Center in Physics and Astronomy, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.Graduate School of Energy ScienceKyoto UniversityKyotoJapan

Personalised recommendations