Enhanced photovoltaic performance of sol–gel-derived FTO/TiO2/BiFeO3 heterostructure thin film obtained via modifying thickness of TiO2 transport layer

  • H. T. Sui
  • H. J. Sun
  • M. Li
  • X. F. LiuEmail author


BiFeO3 (BFO) is a promising photovoltaic material and TiO2 tends to be an efficient electronic transmission material in perovskite solar cells. In this paper, FTO/TiO2/BFO heterostructure thin films with various TiO2 thicknesses (0, 50, 100, and 150 nm, respectively) are prepared successfully via a sol–gel method. The effects of TiO2 layer thickness on the microstructure, insulating and photovoltaic properties are characterized. All the thin films possess a polycrystalline structure that matches well with the perovskite phase. Significant improvement can be achieved with the introduction of the TiO2 electron transport layer. Among all tested films, the one with 100 nm-TiO2 exhibited superior photovoltaic performance. The champion power conversion efficiency (η) of 3.67% with fill factor of 0.64 could be achieved with an open-circuit voltage (Voc) of 1.64 V and a short-circuit photocurrent (Jsc) of 3.50 mA/cm2. This can be ascribed to the favorable effect of TiO2 to the electron transport and restriction to the electron–hole recombination.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51272191, 51372181, 51672198), Innovative Public Service Platform Special Plan of Shandong (Grant Nos. 2014CXPT002), Primary Research Plan of Shandong Province (Grant Nos. 2016CYJS07A03-2), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3), and Central Guiding Local Science and Technology Development Special Funds (Grant Nos. 2060503).


  1. 1.
    P.S. Brody, F. Crowne, J. Electron. Mater. 4, 955–971 (1975)CrossRefGoogle Scholar
  2. 2.
    G. Yi, Z. Wu, M. Sayer, J. Appl. Phys. 64, 2717–2724 (1988)CrossRefGoogle Scholar
  3. 3.
    H. Ito, C. Takyu, H. Inaba, Electron. Lett. 27, 1221–1222 (1991)CrossRefGoogle Scholar
  4. 4.
    M. Ichiki, R. Maeda, Y. Morikawa, Y. Mabune, Appl. Phys. Lett. 84, 395–397 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Ichiki, H. Furue, T. Kobayashi, R. Maeda, Appl. Phys. Lett. 87, 222903 (2005)CrossRefGoogle Scholar
  6. 6.
    X. Wang, Y. Lin, X. Ding, J. Jiang, J. Alloy. Compd. 509, 6585–6588 (2011)CrossRefGoogle Scholar
  7. 7.
    S.M. Selbach, M.A. Einarsrud, T. Grande, Chem. Mater. 21, 169 (2009)CrossRefGoogle Scholar
  8. 8.
    S.R. Basu, L.W. Martin, Y.H. Chu, M. Gajek, R. Ramesh, R.C. Rai, X. Xu, J.L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Science 324, 63–66 (2009)CrossRefGoogle Scholar
  10. 10.
    A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, Appl. Phys. Lett. 92, 222901 (2008)CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2010)CrossRefGoogle Scholar
  12. 12.
    Q. Gao, S. Yang, L. Lei, S. Zhang, Q. Cao, J. Xie, J. Li, Y. Liu, Chem. Lett. 44, 624–626 (2015)CrossRefGoogle Scholar
  13. 13.
    J.T.W. Wang, J.M. Ball, E.M. Barea, Nano Lett. 14, 724–730 (2014)CrossRefGoogle Scholar
  14. 14.
    B. Peng, G. Jungmann, C. Jäger, D. Haarer, H.W. Schmidt, M. Thelakkat, Coordin. Chem. Rev. 248, 1479–1489 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Katoch, H. Kim, T. Hwang, S.K. Sang, J. Sol. Gel. Technol. 61, 77–82 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Gautam, K. Singh, K. Sen, R.K. Kotnala, M. Singh, Mater. Lett. 65, 591–594 (2011)CrossRefGoogle Scholar
  17. 17.
    G.D. Hu, X. Cheng, W.B. Wu, C.H. Yang, Appl. Phys. Lett. 91, 232909 (2007)CrossRefGoogle Scholar
  18. 18.
    A.K. Chandiran, A. Yella, M.T. Mayer, P. Gao, M.K. Nazeeruddin, M. Grätzel, Adv. Mater. 26, 4309–4312 (2014)CrossRefGoogle Scholar
  19. 19.
    W. Cai, C. Fu, R. Gao, W. Jiang, X. Deng, G. Chen, J. Alloy. Compd. 617, 240–246 (2014)CrossRefGoogle Scholar
  20. 20.
    C.M. Raghavan, W.K. Jin, S.K. Sang, J. Am. Ceram. Soc. 97, 235–240 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)CrossRefGoogle Scholar
  22. 22.
    P.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Appl. Phys. Lett. 103, 022910 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  24. 24.
    H.-S. Kim, S.H. Im, N.-G. Park, J. Phys. Chem. C 118, 5616 (2014)CrossRefGoogle Scholar
  25. 25.
    S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Appl. Phys. Lett. 95, 062909 (2009)CrossRefGoogle Scholar
  26. 26.
    H.J. Feng, M. Wang, F. Liu, B. Duan, J. Tian, X. Guo, J. Alloy. Compd. 628, 311–316 (2015)CrossRefGoogle Scholar
  27. 27.
    X.J. Ding, L. Ni, S.B. Ma, Y.S. Ma, L.X. Xiao, Z.J. Chen, Acta Phys. Sin 64, 038802 (2015)Google Scholar
  28. 28.
    H. Yang, H.M. Luo, H. Wang, I.O. Usov, N.A. Suvorova, M. Jain, D.M. Feldmann, P.C. Dowden, R.F. DePaula, Q.X. Jia, Appl. Phys. Lett. 92, 102113 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Sathishkumar, R.V. Mangalaraja, H. Mansilla, M.A. Gracia-Pinilla, S. Anandan, Appl. Catal. B Environ. 160–161, 692–700 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 4, 2880–2884 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China
  4. 4.Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development ZoneZiboPeople’s Republic of China

Personalised recommendations