Advertisement

Photoelectrochemical water splitting properties of CdS/TiO2 nanofibers-based photoanode

  • Van Nghia Nguyen
  • Minh Thuy Doan
  • Minh Vuong NguyenEmail author
Article
  • 24 Downloads

Abstract

CdS-sensitized TiO2 nanofibers (CdS/TiO2 NFs) structures were fabricated on the indium tin oxide (ITO) conducting substrate that acts as a working electrode in photoelectrochemical (PEC) cell for the generation of hydrogen by water splitting. TiO2 NFs on ITO conducting substrate were synthesized by electrospinning technique using Titanium tetraisopropoxide as the precursor, followed by a calcination process in air at 500 °C for 2 h. CdS deposition on TiO2 NFs structures was carried out by the dip coating method with different dipping times to optimize the water splitting efficiency. The morphologies and crystalline structures of fabricated samples were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The PEC properties of the electrodes were measured using a potentiostat instrument in a mixture of 0.25 M Na2S and 0.35 M Na2SO3 aqueous solutions for CdS/TiO2 photoanodes and in 0.5 M Na2SO4 electrolyte for uncoated TiO2 photoanode under the illumination of simulated sunlight (100 mW/cm2 from 150 W xenon lamp). It was found that an optimized TiO2 NFs structure sensitized by CdS layer yields a photoconversion efficiency of 3.2% at 0.0 V (vs. Ag/AgCl). The value of photocurrent density for CdS/TiO2 NFs samples were more than 20 times higher than that of the uncoated TiO2 NFs sample at 0.0 V (vs. Ag/AgCl) under a simulated sunlight irradiation.

Notes

Acknowledgements

This work is supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education and Training, Vietnam (Code B2016–DQN-04, 2016–2017).

References

  1. 1.
    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrog. Energy 27, 991 (2002)CrossRefGoogle Scholar
  2. 2.
    C.E. Thomas, B.D. James, F.D. Lomax, Int. J. Hydrog. Energy 23, 949 (1998)CrossRefGoogle Scholar
  3. 3.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  4. 4.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv. Funct. Mater. 19, 1849 (2009)CrossRefGoogle Scholar
  5. 5.
    P.-T. Hsiao, L.-C. Chen, T.-L. Li, H. Teng, J. Mater. Chem. 21, 19402 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Emin, M. de Respinis, T. Mavrič, B. Dam, M. Valant, W.A. Smith, Appl. Catal. A 523, 130 (2016)CrossRefGoogle Scholar
  7. 7.
    Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, ACS Appl. Mater. Interfaces 7, 14157 (2015)CrossRefGoogle Scholar
  8. 8.
    S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)CrossRefGoogle Scholar
  9. 9.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 3318 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.-L. Lee, B.-M. Huang, H.-T. Chien, Chem. Mater. 20, 6903 (2008)CrossRefGoogle Scholar
  11. 11.
    I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)CrossRefGoogle Scholar
  12. 12.
    R. Dang, X. Ma, J. Mater. Sci. Mater. Electron. 28, 8818 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Hoyer, R. Könenkamp, Appl. Phys. Lett. 66, 349 (1995)CrossRefGoogle Scholar
  14. 14.
    A. Zaban, O.I. Mićić, B.A. Gregg, A.J. Nozik, Langmuir 14, 3153 (1998)CrossRefGoogle Scholar
  15. 15.
    T. Minegishi, J. Su, K. Domen, Meeting Abstracts MA2018-01, 1888 (2018)Google Scholar
  16. 16.
    X. Li, J. Li, C. Cui, Z. Liu, Y. Niu, J. Phys. Chem. C 120, 4183 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Gao, Y. Cui, J. Wang, A. Cavalli, A. Standing, T.T.T. Vu, M.A. Verheijen, J.E.M. Haverkort, E.P.A.M. Bakkers, P.H.L. Notten, Nano Lett. 14, 3715 (2014)CrossRefGoogle Scholar
  18. 18.
    N.M. Vuong, T.T. Hien, N.D. Quang, N.D. Chinh, D.S. Lee, D. Kim, D. Kim, J. Power Sources 317, 169 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Hu, G. Chen, Nano Lett. 7, 3249 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Shi, Y. Hara, C. Sun, M.A. Anderson, X. Wang, Nano Lett. 11, 3413 (2011)CrossRefGoogle Scholar
  21. 21.
    A.B. Murphy, Sol. Energy Mater. Sol Cells 91, 1326 (2007)CrossRefGoogle Scholar
  22. 22.
    V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani, Chem. Phys. 339, 111 (2007)CrossRefGoogle Scholar
  23. 23.
    J.M. Nel, H.L. Gaigher, F.D. Auret, Thin Solid Films 436, 186 (2003)CrossRefGoogle Scholar
  24. 24.
    S. Haukka, E.L. Lakomaa, O. Jylha, J. Vilhunen, S. Hornytzkyj, Langmuir 9, 3497 (1993)CrossRefGoogle Scholar
  25. 25.
    C.E. Mixan, J.B. Lambert, J. Org. Chem. 38, 1350 (1973)CrossRefGoogle Scholar
  26. 26.
    P. Wang, Y. Zhang, L. Su, W. Gao, B. Zhang, H. Chu, Y. Wang, J. Zhao, W.W. Yu, Electrochim. Acta 165, 110 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Li, F. Gao, L. Zhao, Y. Ye, J. Liu, Y. Tao, IET Micro Nano Lett. 11, 731 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Van Nghia Nguyen
    • 1
    • 2
  • Minh Thuy Doan
    • 1
  • Minh Vuong Nguyen
    • 1
    Email author
  1. 1.Department of PhysicsQuy Nhon UniversityQuy NhơnVietnam
  2. 2.Department of PhysicsHue University of SciencesHue, Thua Thien - HueVietnam

Personalised recommendations