Advertisement

Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions

  • Rajesh Narayana PerumalEmail author
  • Venkatraj Athikesavan
Article
  • 73 Downloads

Abstract

Electrical response and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT (PZN-PbZnl/3Nb2/3O3, PMN-PbMg1/3Nb2/3O3 and PT-PbTiO3) solid solutions were investigated. SEM micrographs of the sample showed grains of unequal sizes distributed throughout the sample. The average grain size observed was about 0.77 μm for PZN-PT, 0.93 for PMN-PT and 1.82 for PZN–PMN-PT solid solutions. All the solid solutions exhibited good dielectric relaxation behaviour up to 500 °C in the frequency range of 1–2 MHz. The solid solutions showed improved ferroelectric properties (Pr ~ 17.4 μC cm−2, Ec ~ 3.65 kV cm−1, Pm ~ 20.1 μC cm−2 for PZN-PT) and crossover from nonergodic to ergodic relaxor phase with respect to temperature. The optimum piezoelectric coefficients, the piezoelectric voltage coefficients of the solid solutions were also studied. P–E loop analysis confirmed high energy storage density (W) of 0.25 J cm−3 at 50 kV cm−1 for PZN–PMN-PT which substantiates its wide use in capacitor applications.

Notes

Acknowledgements

The authors would like to thank the Department of Science and Technology, New Delhi for the financial support for the Project ref-SR/S2/CMP/117/2012. The authors acknowledge the Department of Physics, NIT, and Tiruchirappalli for multiferroic testing.

References

  1. 1.
    Q. Gao, Q. Hu, L. Jin, M.V. Gorev, Dielectric relaxation and phase transition behaviour of (1−x)Pb(Zn1/3Nb2/3)O3-xBaTiO3 binary solid solutions. Ceram. Int. 44, 18491–18498 (2018).  https://doi.org/10.1016/j.ceramint.2018.07.069 CrossRefGoogle Scholar
  2. 2.
    T. Garg, A.R. Kulkarni, N. Venkataramani, Influence of PbTiO3 addition on microstructure of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics. AIP Conf. Proc. 1536, 669–670 (2013).  https://doi.org/10.1063/1.4810404 CrossRefGoogle Scholar
  3. 3.
    P.D. Gio, N.D.V. Quang, T.D. Hieu, T.P. Nam, Development of 0.8 Pb(Zr0.48Ti0.52)O3-0.2Pb[(Zn1/3Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 ceramics for high-intensity ultrasound applications. J. Electron. Mater. 47, 5944–5951 (2018).  https://doi.org/10.1007/s11664-018-6454-8 CrossRefGoogle Scholar
  4. 4.
    X. Wang, H. Chen, Dielectric behaviours under high electric field for Pb(Zr1/3Nb2/3)O3-PbTiO3-BaTiO3 relaxor ferroelectric ceramics. AIP Conf. Proc. 91, 5979 (2012).  https://doi.org/10.1063/1.1466530 Google Scholar
  5. 5.
    L.A. Reznitchenko, I.A. Verbenko, O.N. Razumovskaya, Preparation structure and piezoelectric properties of PZN-PMN-PT ceramics in the composition range of large PZN concentrations. Ceram. Int. 38, 3835–3839 (2012).  https://doi.org/10.1016/j.ceramint.2012.01.033 CrossRefGoogle Scholar
  6. 6.
    J. Peräntie, H.N. Tailor, J. Hagberg, H. Jantunen, Electrocaloric properties in relaxor ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 system. AIP Conf. Proc. 114, 174105 (2013)Google Scholar
  7. 7.
    S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. AIP Conf. Proc. 111, 2 (2012).  https://doi.org/10.1063/1.3679521 Google Scholar
  8. 8.
    N. Wu, X. Song, Y. Hou, Relaxor behavior of (1−x)Pb (Mg1/3Nb2/3)O3-xPbTiO3 ceramics. Chin. Sci. Bull. 54, 1267 (2009)  https://doi.org/10.1007/s11434-009-0002-0 Google Scholar
  9. 9.
    H.W. Zhu, D.Y. Zheng, X.J. Wang et al., Effects of Ta2O5 addition on relaxation behaviour and electric properties of PMS–PNN–PZT ceramics. J. Mater. Sci. Mater. Electron. 29, 16864–16871 (2018).  https://doi.org/10.1007/s10854-018-9781-x CrossRefGoogle Scholar
  10. 10.
    S. Patel, A. Chauhan, R. Vaish, Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching. Mater. Res. Express 1, 045502 (2014).  https://doi.org/10.1088/2053-1591/1/4/045502 CrossRefGoogle Scholar
  11. 11.
    J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Funct. Mater. (2018).  https://doi.org/10.1002/adma.201802155 Google Scholar
  12. 12.
    Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu, Antiferroelectrics for energy storage applications: a review. Adv. Mater. Technol. (2018).  https://doi.org/10.1002/admt.201800111 Google Scholar
  13. 13.
    M.V. Talanov, L.A. Shilkina, A.I. Verbenko, L.A. Reznichenko, Impact of Ba2+ on structure and piezoelectric properties of PMN–PZN–PNN–PT ceramics near the morphotropic phase boundary. J. Am. Ceram. Soc 98, 838–847 (2015).  https://doi.org/10.1111/jace.13371 CrossRefGoogle Scholar
  14. 14.
    Z. Qiu, H. Hao, M. Cao et al., Characteristics and structure of Mn-doped (0.6−x)PMT–0.4PT–xPZ (x = 0.2, 0.25) ternary system near morphotropic phase boundary. J. Mater. Sci. Mater. Electron. 29, 14261–14266 (2018).  https://doi.org/10.1007/s10854-018-9559-1 CrossRefGoogle Scholar
  15. 15.
    X. Li, L. Ai, Z. Wang, Y. Liu, C. He, T. Li, T. Chu, D. Pang, H. Tailor, X. Long, Preparation, structure, and electric properties of the Pb(Zn1/3Nb2/3) O3–Pb(Yb1/2Nb1/2) O3–PbTiO3 ternary ferroelectric system ceramics near the morphotropic phase boundary. J. Eur. Ceram. Soc. 33, 2155–2165 (2013).  https://doi.org/10.1016/j.jeurceramsoc.2013.03.013 CrossRefGoogle Scholar
  16. 16.
    A.D. Polli, F.F. Lange, C.G. Levi, Metastability of the fluorite, pyrochlore, and perovskite structures in the PbO-ZrO2-TiO2 system. J. Am. Ceram. Soc. 83, 873–881 (2004).  https://doi.org/10.1111/j.1151-2916.2000.tb01288.x CrossRefGoogle Scholar
  17. 17.
    G. Peng, D. Zheng, C. Cheng, J. Zhang, Effect of rare-earth addition on morphotropic phase boundary and relaxation behaviour of the PNN-PZT ceramics. J. Alloys Compd. 693, 1250–1256 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.079 CrossRefGoogle Scholar
  18. 18.
    N. Luo, Y. Li, Z. Xia, Q. Li, Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modificatio, crystal growth and properties. CrystEngComm 14, 4547–4556 (2012).  https://doi.org/10.1039/C2CE06430H CrossRefGoogle Scholar
  19. 19.
    M. Pham-Thi, C. Augier, H. Dammak, P. Gaucher, Fine grains ceramics of PIN–PT, PIN–PMN–PT and PMN–PT systems: drift of the dielectric constant under high electric field. Ultrasonics 44, e627 (2006)CrossRefGoogle Scholar
  20. 20.
    A.H.B. Kumar, Intrinsic polarization and resistive leakage analyses in high performance 5 piezo-/pyroelectric Ho-doped 0.64PMN-0.36PT binary ceramic. Adv. Powder. Technol. (2018).  https://doi.org/10.1016/j.apt.2018.08.012 Google Scholar
  21. 21.
    T. Li, X. Li, Z. Wang, Y. Liu, C. He, D. Shen, X. Long, A Pb (In1/2Nb1/2) O3-Pb (Zn1/3Nb2/3) O3-PbTiO3 ternary ferroelectric system with high Tc and high piezoelectric properties. Mater. Res. 48, 127–130 (2013).  https://doi.org/10.1016/j.materresbull.2012.10.020 Google Scholar
  22. 22.
    E. Akça, H. Yilmaz, C. Duran, Processing and electrical properties in lead-based (Pb(Mg1/3Nb2/3)O3, Pb(Yb1/2Nb1/2)O3, PbTiO3) systems. J. Am. Ceram. Soc. 93, 28–31 (2010).  https://doi.org/10.1111/j.1551-2916.2009.03357.x CrossRefGoogle Scholar
  23. 23.
    K. Chung, J. Yoo, C. Lee, D. Lee, Y. Jeong, Microstructural, dielectric and piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr, Ti)O3 ceramics with the addition of Li2CO3 and Bi2O3. Sens. Actuators A 125, 340–345 (2006).  https://doi.org/10.1016/j.sna.2005.06.018 CrossRefGoogle Scholar
  24. 24.
    R. Samad, B. Want, Dielectric, ferroelectric and magnetic properties of Pb0. 95Pr0. 05Zr0. 52Ti0. 48O3-CoPr0. 1Fe1.9O4 ceramic composite. J. Alloys Compd. 715, 43–52 (2017).  https://doi.org/10.1016/j.jallcom.2017.04.246 CrossRefGoogle Scholar
  25. 25.
    Y. Liu, X. Yang, F. Lai, Z. Huang, X. Li, Z. Wang, Structure and properties of Pb(Lu1/2Nb1/2) O3-0.2 PbTiO3relaxor ferroelectric crystal. Mater. Res. 67, 83–86 (2015).  https://doi.org/10.1016/j.materresbull.2015.03.005 Google Scholar
  26. 26.
    L.A. Reznitchenko, L.A. Shilkina, O.N. Razumovskaya, Phase equilibrium and properties of solid solutions of PbTiO3-PbZrO3-PbNb2/3Mg1/3O3-PbGeO3 system. Inorg. Mater. 45, 173–181 (2009).  https://doi.org/10.1134/S0020168509020125 CrossRefGoogle Scholar
  27. 27.
    X. Hao, J. Zhai, X. Song, J. Yang, Fabrication and characterization of sol-gel derived (100) textured (Pb0.97La0.02)(Zr0.95Ti0.05)O3 thin films. J. Am. Ceram. Soc. 92, 3081–3083 (2009).  https://doi.org/10.1111/j.1551-2916.2009.03304.x CrossRefGoogle Scholar
  28. 28.
    D. Wang, Y. Li, W. Cao, B. Li, J. Yuan, D. Zhang, Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics. Ceram. Int. 41, 9647–9654 (2015).  https://doi.org/10.1016/j.ceramint.2015.04.030 CrossRefGoogle Scholar
  29. 29.
    D. Wang, J. Li, M. Cao, S. Zhang, Effects of Nb2O5 additive on the piezoelectric and dielectric properties of PHT-PMN ternary ceramics near the morphotropic phase boundary. Phys. Status Solidi 211, 226–230 (2014).  https://doi.org/10.1002/pssa.201330203 CrossRefGoogle Scholar
  30. 30.
    D. Wang, Q. Zhao, M. Cao, Y. Cui, S. Zhang, Dielectric, piezoelectric and ferroelectric properties of Al2O3 and MnO2 modified PbSnO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys. Status Solidi A 210, 1363–1368 (2013).  https://doi.org/10.1002/pssa.201228760 CrossRefGoogle Scholar
  31. 31.
    D. Goswami, S.K. Medda, G. De, Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. ACS Appl. Mater. Interfaces 3, 3440–3447 (2011).  https://doi.org/10.1021/am200666m CrossRefGoogle Scholar
  32. 32.
    Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006)CrossRefGoogle Scholar
  33. 33.
    Z. Liu, B. Wu, J. Wu, Reduced dielectric loss and high piezoelectric constant in Ce and Mn co-doped BiScO3-PbCexTi1–xO3-Bi(Zn0.5Ti0.5)O3 ceramics. Ceram. Int. 44, 16483–16488 (2018).  https://doi.org/10.1016/j.ceramint.2018.06.065 CrossRefGoogle Scholar
  34. 34.
    R.N. Perumal, V. Athikesavan, P. Nair, Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceram. Int. 44, 13259–13266 (2018).  https://doi.org/10.1016/j.ceramint.2018.04.155 CrossRefGoogle Scholar
  35. 35.
    D. Wang, M. Cao, S. Zhang, Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc. 32, 433–439 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2011.08.025 CrossRefGoogle Scholar
  36. 36.
    D. Wang, M. Cao, S. Zhang, Piezoelectric ceramics in the PbSnO3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary system. J. Am. Ceram. Soc. 94, 3690–3693 (2011).  https://doi.org/10.1111/j.1551-2916.2011.04857.x CrossRefGoogle Scholar
  37. 37.
    D. Wang, M. Cao, S. Zhang, Investigation of ternary system Pb(Sn, Ti)O3-Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J. Eur. Ceram. Soc. 32, 441–448 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2011.08.038 CrossRefGoogle Scholar
  38. 38.
    D. Wang, M. Cao, Q. Zhao, Y. Cui, S. Zhang, Dielectric and piezoelectric properties of manganese-modified PbHfO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 ternary ceramics with morphotropic phase boundary compositions. Phys. Status Solidi 7, 221–223 (2013).  https://doi.org/10.1002/pssr.201206508 Google Scholar
  39. 39.
    I.V. Ciuchi, L. Mitoseriu, C. Galassi, Antiferroelectric to ferroelectric crossover and energy storage properties of (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 (0.02 ≤ x ≤ 0.04) ceramics. J. Am. Ceram. Soc. 99, 2382–2387 (2016).  https://doi.org/10.1111/jace.14246 CrossRefGoogle Scholar
  40. 40.
    D. Wang, Z.F.D. Zhou, A. Khesro, S. Murakami, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133–4144 (2018).  https://doi.org/10.1039/c7ta09857j CrossRefGoogle Scholar
  41. 41.
    Y. Pu, L. Zhang, Y. Cui, M. Chen, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1−x)BaxTi(1−y)SnyO3 ceramics. ACS Sustain. Chem. Eng. 6, 6102–6109 (2018).  https://doi.org/10.1021/acssuschemeng.7b04754 CrossRefGoogle Scholar
  42. 42.
    D.J. Shin, J. Kim, J.H. Koh, Piezoelectric properties of (1-x)BZT-xBCT system for energy harvesting applications. J. Eur. Ceram. Soc. 38, 4395–4403 (2018).  https://doi.org/10.1016/j.jeurceramsoc.2018.05.022 CrossRefGoogle Scholar
  43. 43.
    D. Wang, Z. Fan, W. Li, High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics. ACS Appl. Energy Mater. 1, 4403–4412 (2018).  https://doi.org/10.1021/acsaem.8b01099 CrossRefGoogle Scholar
  44. 44.
    R.A. Malik, A. Hussain, M. Acosta, J. Daniels, Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics. J. Eur. Ceram. Soc. 38, 2511–2519 (2018).  https://doi.org/10.1016/j.jeurceramsoc.2018.01.010 CrossRefGoogle Scholar
  45. 45.
    R. Rianyoi, R. Potong, A. Ngamjarurojana, Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramic composites. J. Mater. Sci. 53, 345–355 (2018).  https://doi.org/10.1007/s10853-017-1533-4 CrossRefGoogle Scholar
  46. 46.
    Q. Guo, G.Z. Cao, I.Y. Shen, Measurements of piezoelectric coefficient d33 of lead zirconate titanate thin films using a mini force hammer. J. Vib. Acoust. 135, 011003 (2013).  https://doi.org/10.1115/1.4006881 CrossRefGoogle Scholar
  47. 47.
    Chitra, K.C. Singh, Dysprosium doping on structural and electrical properties of lead free (Ba0.7Ca0.3)(Ti0.92Sn0.08)O3 ceramic system. J. Mater. Sci. Mater. Electron. 29, 17630–17637 (2018).  https://doi.org/10.1007/s10854-018-9866-6 CrossRefGoogle Scholar
  48. 48.
    S. Lin, T. Lu, C. Jin, Size effect on the dielectric properties of BaTiO3 nano ceramics in a modified Ginsburg-Landau-Devonshire thermodynamic theory. Phys Rev B 74, 134115 (2006).  https://doi.org/10.1103/PhysRevB.74.134115 CrossRefGoogle Scholar
  49. 49.
    A. Hussain, N. Sinha, S. Bhandari, H. Yadav, B. Kumar, Synthesis of 0.64Pb(Mg1/3Nb2/3)O3-0.36PbTiO3ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications. J. Asian Ceram. Soc. (2016).  https://doi.org/10.1016/j.jascer.2016.06.004 Google Scholar
  50. 50.
    N. Abid Hussain, S. Sinha, Goel, B. Kumar, Improvement in dielectric, piezoelectric and ferroelectric properties of 0.64PMN-0.36PT ceramics by Sb modification. J. Mater. Sci. Mater. Electron. 28, 14298–14307 (2017).  https://doi.org/10.1007/s10854-017-7289-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rajesh Narayana Perumal
    • 1
    • 2
    Email author
  • Venkatraj Athikesavan
    • 1
    • 2
  1. 1.Department of PhysicsSSN College of EngineeringKalavakkamIndia
  2. 2.Center for Radiation, Environmental Science and TechnologySSN College of EngineeringKalavakkamIndia

Personalised recommendations