Synthesis of ZnO–Au composite microspheres by one-pot polyol method and its application as a photo-catalyst

  • Binglong Yu
  • Yu Wen
  • Xiaoxin Yang
  • Xiulan CaiEmail author


The growth of metal mixed semiconductor particles was known to enhance their photocatalytic properties. In this study, a brand-new and simple one-pot polyol method was successfully used to synthesize metal gold embedded in ZnO nanoparticles (NPs), termed ZnO–Au microspheres. The physicochemical properties of ZnO–Au microspheres were analyzed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy measurements, UV–Vis absorption espectroscopy and Fourier transform infrared espectroscopy. Applied to degradation of methylene blue under visible light, the ZnO–Au microspheres photocatalyst showed better photocatalytic activity than pure ZnO NPs. The reusability of ZnO–Au microspheres was also examined.



This work was supported by the Project of Innovation for Enhancing Guangdong Pharmaceutical University, Provincial Experimental Teaching Demonstration Center of Chemistry & Chemical Engineering.


  1. 1.
    X. Qiao, B. Su, C. Liu, Q. Song, D. Luo, G. Mo, T. Wang, Adv. Mater. 30, 1702275 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Wang, X. Yang, A. Li, X. Cai, Mater. Lett. 220, 24 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Yang, Y. Wen, A. Wu, M. Xu, T. Amano, L. Zheng, L. Zhao, Mater. Sci. Eng. C 80, 517 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Han, X. Sun, R. Zhao, H. Gao, L. Wang, J. Nanopart. Res. 19, 233 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, Y. Cui, Y. Zhao, B. He, X. Shi, D. Di, Q. Zhang, S. Wang, Eur. J. Pharm. Biopharm. 117, 105 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long, L. Ling, J. Colloid Interface Sci. 462, 200 (2016)CrossRefGoogle Scholar
  7. 7.
    K.H. Choi, S.Y. Park, B.J. Park, J.S. Jung, Surf. Coat. Technol. 320, 240 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Wang, L. Xu, Y. Ao, C. Wang, J. Colloid Interface Sci. 495, 122 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Zhu, X. Cai, M. Fujitsuka, J. Zhang, T. Majima, Angew. Chem. Int. Ed. 56, 2064 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Wang, X. Wu, C. Wang, Z. Rong, H. Ding, H. Li, S. Li, N. Shao, P. Dong, R. Xiao, S. Wang, ACS Appl. Mater. Interfaces 8, 19958 (2016)CrossRefGoogle Scholar
  11. 11.
    X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, S. Kaskel, Y. Zhu, Small 13, 1602225 (2017)CrossRefGoogle Scholar
  12. 12.
    Q. Feng, S. Li, W. Ma, H.J. Fan, X. Wan, Y. Lei, Z. Chen, J. Yang, B. Qin, J. Alloys Compd. 737, 197 (2018)CrossRefGoogle Scholar
  13. 13.
    K. Patel, B. Sundara Raj, Y. Chen, X. Lou, Colloids Surf. B 140, 213 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Usui, K. Koseki, T. Tamura, Y. Domi, H. Sakaguchi, Mater. Lett. 186, 338 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Eftekhari, Appl. Mater. Today 8, 1 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Zheng, X. Li, W. Du, D. Shi, W. Ning, X. Lu, Z. Hou, Appl. Catal. B 203, 146 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29, 939 (2013)CrossRefGoogle Scholar
  18. 18.
    C.P. Liu, Y.Y. Hui, Z.H. Chen, J.G. Ren, Y. Zhou, L. Tang, Y.B. Tang, J.A. Zapien, P.L. Shu, RSC Adv. 3, 17918 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Zhao, S. Su, G. Wu, C. Li, Z. Qin, X. Lou, J. Zhou, Appl. Surf. Sci. 406, 254 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Lachom, P. Poolcharuansin, P. Laokul, Mater. Res. Express 4, 035006 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Li, R. Wang, X. Shao, L. Shao, B. Zhang, Inorg. Chem. Front. 4, 2088 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Sardar, J. Maity, M.K. Ghosalya, C.S. Gopinath, T. Bala, Mater. Res. Express 4, 055011 (2017)CrossRefGoogle Scholar
  23. 23.
    R.A. da Silva, M.J. Jacinto, V.C. Silva, D.C. Cabana, J. Sol–Gel. Sci. Technol. 86, 94 (2018)CrossRefGoogle Scholar
  24. 24.
    P. She, K. Xu, S. Zeng, Q. He, H. Sun, Z. Liu, J. Colloid Interface Sci. 499, 76 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Flomin, P.I. Jen-La, B. Moshofsky, M. Diab, T. Mokari, Nanoscale 6, 1335 (2014)CrossRefGoogle Scholar
  26. 26.
    P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, J. Am. Chem. Soc. 133, 5660 (2011)CrossRefGoogle Scholar
  27. 27.
    K.X. Yao, X. Liu, L. Zhao, H.C. Zeng, Y. Han, Nanoscale 3, 4195 (2011)CrossRefGoogle Scholar
  28. 28.
    O. Ranasingha, C. Wang, C. Matranga, J.P. Lewis, J. Mater. Chem. A 3, 15141 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Chamorro, J. Ghanbaja, Y. Battie, A.E. Naciri, F. Soldera, F. Mücklich, D. Horwat, J. Phys. Chem. C 120, 29405 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Udawatte, M. Lee, J. Kim, D. Lee, ACS Appl. Mater. Interfaces 3, 4531 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Mclaren, T. Valdessolis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131, 12540 (2009)CrossRefGoogle Scholar
  32. 32.
    H. He, W. Cai, Y. Lin, B. Chen, Langmuir 26, 8925 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Sun, J. He, J. Wang, S.Y. Zhang, C. Liu, T. Sritharan, S. Mhaisalkar, M.Y. Han, D. Wang, H. Chen, J. Am. Chem. Soc. 135, 9099 (2013)CrossRefGoogle Scholar
  34. 34.
    W. He, H.K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.J. Yin, J. Am. Chem. Soc. 136, 750 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Li, E. Shi, W. Zhong, Z. Yin, J. Synth. Cryst. 28, 117 (1999)Google Scholar
  36. 36.
    X. Tang, E.S.G. Choo, L. Li, J. Ding, J. Xue, Chem. Mater. 22, 3383 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Morag, N. Froumin, D. Mogiliansky, V. Ezersky, E. Beilis, S. Richter, R. Jelinek, Adv. Funct. Mater. 23, 5663 (2013)CrossRefGoogle Scholar
  38. 38.
    T.P. Vinod, R. Jelinek, ACS Appl. Mater. Interfaces 6, 3341 (2014)CrossRefGoogle Scholar
  39. 39.
    T.P. Vinod, S. Zarzhitsky, A. Morag, L. Zeiri, Y. Levikalisman, H. Rapaport, R. Jelinek, Nanoscale 5, 10487 (2013)CrossRefGoogle Scholar
  40. 40.
    N.S. Ramgir, D.J. Late, A.B. Bhise, M.A. More, I.S. Mulla, D.S. Joag, K. Vijayamohanan, J. Phys. Chem. B 110, 18236 (2006)CrossRefGoogle Scholar
  41. 41.
    J.H. Zheng, Q. Jiang, J.S. Lian, Appl. Surf. Sci. 257, 5083 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Wu, Z. Chen, T. Wang, X. Ji, Appl. Surf. Sci. 412, 69 (2017)CrossRefGoogle Scholar
  43. 43.
    A.C. Templeton, J.J. Pietron, R.W. Murray, P. Mulvaney, J. Phys. Chem. B 104, 564 (2000)CrossRefGoogle Scholar
  44. 44.
    G. Shan, M. Zhong, S. Wang, Y. Li, Y. Liu, J. Colloid Interface Sci. 326, 392 (2008)CrossRefGoogle Scholar
  45. 45.
    L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Angew. Chem. Int. Ed. Engl. 50, 1388 (2011)CrossRefGoogle Scholar
  46. 46.
    S. Kuriakose, K. Sahu, S.A. Khan, A. Tripathi, D.K. Avasthi, S. Mohapatra, Opt. Mater. 64, 47 (2017)CrossRefGoogle Scholar
  47. 47.
    G.R.S. Andrade, C.C. Nascimento, E.C.S. Júnior, D.T.S.L. Mendes, I.F. Gimenez, J. Alloys Compd. 710, 557 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
  2. 2.Department of Pharmacology, School of Basic MedicineWuhan UniversityWuhanChina

Personalised recommendations