Microwave absorption enhancement and loss mechanism of lamellar MnO2 nanosheets decorated reduced graphene oxide hybrid

  • Yanxia Wu
  • Ying LiuEmail author
  • Wenjie Wang
  • Jian Wang
  • Caili Zhang
  • Zhiguo Wu
  • Pengxun Yan
  • Kexun Li


Manganese oxide/reduced graphene oxide (MnO2/rGO) hybrid with layered MnO2 nanosheets grow on rGO surfaces have been prepared for microwave absorbing. The hybrid exhibits significantly enhanced microwave absorption properties compared with rGO and MnO2. A maximum reflection loss value can reach − 26.7 dB at 11.04 GHz with the matching thickness of 2.6 mm, and the effective absorption bandwidths exceeding − 10 dB and − 20 dB are 3.6 GHz and 1.06 GHz, respectively. The enhancement in microwave absorption efficiency of MnO2/rGO hybrid is arose from the synergistic effects between lamellar MnO2 and rGO in its unique three-dimensional (3D) architecture, which leads to strong conduction loss and multiple reflections, and further in favour of appropriate impedance matching ratio and good attenuation ability. These fundamental understandings on the property–structure relationship of as-synthesized MnO2/rGO hybrid will prove an efficient approach to the designing and construction of MnO2-based 3D nanostructures for advanced electromagnetic wave absorbing applications.



The authors thank the National Natural Science Foundation of China (Grant No. 51505318) and the Youth Foundation of Taiyuan University of Technology (No. 1205-04020102) and Shanxi Province Science Foundation for Youths (Nos. 201601D202033 and 201601D202034) for financial support.

Supplementary material

10854_2018_354_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1220 KB)


  1. 1.
    L. Zou, S. Zhang, X. Li, C. Lan, Y. Qiu, Y. Ma, Nanocomposites: step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding. Adv. Mater. Interfaces 3, 1500476 (2016)CrossRefGoogle Scholar
  2. 2.
    F. Qin, H.X. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Xia, Y. Cao, N.A. Oyler, J. Murowchick, L. Liu, X. Chen, Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl. Mater. Interfaces 7, 10407 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015)CrossRefGoogle Scholar
  5. 5.
    C.M. Watts, M. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, 98 (2012)Google Scholar
  6. 6.
    T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Meng, K. Xiong, K. Ju, S. Li, G. Xu, Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial. J. Magn. Magn. Mater. 385, 407 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie, Y. Jiang, W. Zhong, Y. Du, Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Olmedo, P. Hourquebie, F. Jousse, Microwave absorbing materials based on conducting polymers. Adv. Mater. 5, 373 (1993)CrossRefGoogle Scholar
  10. 10.
    C.J. Shearer, A. Cherevan, D. Eder, Application and future challenges of functional nanocarbon hybrids. Adv. Mater. 26, 2295 (2014)CrossRefGoogle Scholar
  11. 11.
    F. Qin, H. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183 (2013)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, S. Li, S. Wang, Z. Yin, J. Zhu, A. Guo, G. Wang, P. Yin, L. Guo, Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J. Phys. Chem. C 120, 22019 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Wang, G. Shi, F. Shi, G. Xu, Y. Qi, D. Li, Z. Zhang, Y. Zhang, H. You, Synthesis of hierarchical cobalt dendrites based on nanoflake self-assembly and their microwave absorption properties. RSC Adv. 6, 40844 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber. Phys. Chem. Chem. Phys. 17, 2228 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, M. Cao, Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22, 21679 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Xu, H. Bi, R. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111, 07A522 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7, 26226 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Liu, Y. Huang, J. Yan, Y. Yang, Z. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 5536 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Duan, Y. Yang, M. He, S. Liu, X. Cui, H. Chen, Absorbing properties of α-manganese dioxide/carbon black double-layer composites. J. Phys. D 41, 125403 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115, 1398 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Wang, D. Qian, Synthesis and electrochemical properties of α-MnO2 microspheres. Mater. Chem. Phys. 109, 399 (2008)CrossRefGoogle Scholar
  25. 25.
    H. Guan, G. Chen, S. Zhang, Y. Wang, Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Mater. Chem. Phys. 124, 639 (2010)CrossRefGoogle Scholar
  26. 26.
    X. Wang, J. Yu, H. Dong, M. Yu, B. Zhang, W. Wang, L. Dong, Synthesis of nanostructured MnO2, SnO2, and Co3O4: graphene composites with enhanced microwave absorption properties. Appl. Phys. A 119, 1483 (2015)CrossRefGoogle Scholar
  27. 27.
    T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh, I. Elizabeth, S.R. Dhakate, S.K. Dhawan, R.B. Mathur, MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2, 4256 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, H. Guan, S. Du, Y. Wang, A facile hydrothermal synthesis of MnO2 nanorod-reduced graphene oxide nanocomposites possessing excellent microwave absorption properties. RSC Adv. 5, 88979 (2015)CrossRefGoogle Scholar
  29. 29.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, C. Qiang, Magnetic properties and microwave absorption properties of short carbon fibres coated by Ni-Fe alloy coatings. Bull. Mater. Sci. 38, 1673 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite and graphene oxide. Carbon 49, 3019 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, Z. Geng, Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors. J. Power Sources 242, 78 (2013)CrossRefGoogle Scholar
  33. 33.
    L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 9, 247401 (2004)CrossRefGoogle Scholar
  34. 34.
    C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J.P. Pereira-Ramos, Raman spectra of birnessite manganese dioxides. Solid State Ion. 159, 345 (2003)CrossRefGoogle Scholar
  35. 35.
    Z. Liu, R. Ma, Y. Ebina, K. Takada, T. Sasaki, Synthesis and delamination of layered manganese oxide nanobelts. Chem. Mater. 19, 6504 (2007)CrossRefGoogle Scholar
  36. 36.
    J.Y. Qu, L. Shi, C.X. He, F. Gao, B.B. Li, Q. Zhou, H. Hu, G.H. Shao, X.Z. Wang, J.S. Qiu, Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 66, 485 (2014)CrossRefGoogle Scholar
  37. 37.
    H.T. Zhu, J. Luo, H.X. Yang, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, Birnessite-type MnO2 nanowalls and their magnetic properties. J. Phys. Chem. C 112, 17089 (2008)CrossRefGoogle Scholar
  38. 38.
    O. Prieto, M. Del Arco, V. Rives, Characterisation of K, Na, and Li birnessites prepared by oxidation with H2O2 in a basic medium. Ion exchange properties and study of the calcined products. J. Mater. Sci. 38, 2815 (2003)CrossRefGoogle Scholar
  39. 39.
    R. Ma, Y. Bando, L. Zhang, T. Sasak, Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16, 918 (2004)CrossRefGoogle Scholar
  40. 40.
    J.Y. Zhu, J.H. He, Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interface 4, 1770 (2012)CrossRefGoogle Scholar
  41. 41.
    L. Mao, K. Zhang, H.S.O. Chan, J.S. Wu, Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J. Mater. Chem. 22, 1845 (2012)CrossRefGoogle Scholar
  42. 42.
    K.S. Kumara, S. Pittalac, S. Sanyadanamc, P. Paik, A new single/few-layered graphene oxide with a high dielectric constant of 106: contribution of defects and functional groups. RSC Adv. 5, 14768 (2015)CrossRefGoogle Scholar
  43. 43.
    H.T. Guan, G. Chen, S.B. Zhang, Y.D. Wang, Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Mater. Chem. Phys. 124, 639 (2010)CrossRefGoogle Scholar
  44. 44.
    X. Xing, G. Lv, W. Xu, L. Liao, W. Jiang, Z. Li, G. Wang, Controllable adjustment of the crystal symmetry of K-MnO2 and its influence on the frequency of microwave absorption. RSC Adv. 6, 58844 (2016)CrossRefGoogle Scholar
  45. 45.
    L. Chen, L. Guo, Z. Li, H. Zhang, J. Lin, J. Huang, S. Jin, X. Chen, Towards intrinsic magnetism of graphene sheets with irregular zigzag edges. Sci. Rep. 3, 2599 (2013)CrossRefGoogle Scholar
  46. 46.
    G.Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osváth, P. Nemes-Incze, C. Hwang, L.P. Biró, L. Tapasztó, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608 (2014)CrossRefGoogle Scholar
  47. 47.
    L. Deng, M. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007)CrossRefGoogle Scholar
  48. 48.
    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1, 765 (2013)CrossRefGoogle Scholar
  49. 49.
    B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17, 2531 (2015)CrossRefGoogle Scholar
  50. 50.
    P.J. Bora, M. Porwal, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix. Planta 179, 235 (2016)Google Scholar
  51. 51.
    J. Hu, Y. Duan, J. Zhang, H. Jing, S. Liu, W. Li, γ-MnO2/polyaniline composites: preparation, characterization, and applications in microwave absorption. Physica B 406, 1950 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Lv, G. Ji, X.H. Liang, H. Zhang, Y. Du, A rod-like MnO2@Fe loading on graphene giving electromagnetic absorption. J. Mater. Chem. C 3, 5056 (2015)CrossRefGoogle Scholar
  53. 53.
    P.J. Bora, I. Azeem, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Morphology controllable microwave absorption property of polyvinylbutyral (PVB)-MnO2 nanocomposites. Composites B 132, 188 (2018)CrossRefGoogle Scholar
  54. 54.
    W. She, H. Bi, Z. Wen, Q. Liu, X. Zhao, J. Zhang, R. Che, Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography. ACS Appl. Mater. Interfaces 8, 9782 (2016)CrossRefGoogle Scholar
  55. 55.
    Y. Wang, Y. Fu, X. Wu, W. Zhang, Q. Wang, J. Li, Synthesis of hierarchical core-shell NiFe2O4@MnO2 composite microspheres decorated graphene nanosheet for enhanced microwave absorption performance. Ceram. Int. 43, 11367 (2017)CrossRefGoogle Scholar
  56. 56.
    W. Zhang, S. Bie, H. Chen, Y. Lu, J. Jiang, Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite. J. Magn. Magn. Mater. 359, 1 (2014)CrossRefGoogle Scholar
  57. 57.
    X. Liu, N. Wu, C. Cui, N. Bia, Y. Sunb, One pot synthesis of Fe3O4/MnO2 core-shell structured nanocomposites and their application as microwave absorbers. RSC Adv. 5, 24016 (2015)CrossRefGoogle Scholar
  58. 58.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin., Y.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124 (2013)CrossRefGoogle Scholar
  59. 59.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017 (2015)CrossRefGoogle Scholar
  60. 60.
    J. Luo, H.T. Zhu, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, Tuning magnetic properties of α-MnO2 nanotubes by K+ doping. J. Phys. Chem. C 114, 8782 (2010)CrossRefGoogle Scholar
  61. 61.
    H.T. Guan, Y.D. Wang, G. Chen, J. Zhu, Frequency and temperature effects on dielectric and electrical characteristics of α-MnO2 nanorods. Powder Technol. 224, 356 (2012)CrossRefGoogle Scholar
  62. 62.
    V.G. Bhide, R.V. Damle, Dielectric properties of manganese dioxide: part II. Physica 26, 513 (1960)CrossRefGoogle Scholar
  63. 63.
    Y. Wang, G.T. Guan, C.J. Dong, X.C. Xiao, S.F. Du, Y.D. Wang, Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42, 936 (2016)CrossRefGoogle Scholar
  64. 64.
    F. Meng, W. Wei, J. Chen, X. Chen, X. Xu, M. Jiang, Y. Wang, J. Lu, Z. Zhou, Growth of Fe3O4 nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Adv. 5, 101121 (2015)CrossRefGoogle Scholar
  65. 65.
    H.T. Guan, J.B. Xie, G. Chen, Y.D. Wang, Facile synthesis of α-MnO2 nanorods at low temperature and their microwave absorption properties. Mater. Chem. Phys. 143, 1061 (2014)CrossRefGoogle Scholar
  66. 66.
    Y. Wang, B.Q. Han, N. Chen, D.Y. Deng, H.T. Guan, Y.D. Wang, Enhanced microwave absorption properties of MnO2 hollow microspheres consisted of MnO2 nanoribbons synthesized by a facile hydrothermal method. J. Alloys Compd. 676, 224 (2016)CrossRefGoogle Scholar
  67. 67.
    H.F. Li, Y.H. Huang, G.B. Sun, X.Q. Yan, Y. Yang, J. Wang, Y. Zhang, Directed growth and microwave absorption property of crossed ZnO netlike micro-/nanostructures. J. Phys. Chem. C 114, 10088 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanxia Wu
    • 1
  • Ying Liu
    • 1
    Email author
  • Wenjie Wang
    • 2
  • Jian Wang
    • 1
  • Caili Zhang
    • 1
  • Zhiguo Wu
    • 3
  • Pengxun Yan
    • 3
  • Kexun Li
    • 4
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina
  3. 3.School of Physical Science and TechnologyLanzhou UniversityLanzhouChina
  4. 4.Key Laboratory of Electromagnetic Protection Materials and Technology in Shanxi ProvinceTaiyuanChina

Personalised recommendations