Core–shell super-structures via smart deposition of naphthothiadiazole and benzodithiophene-possessing polymer backbones onto carbon nanotubes and photovoltaic applications thereof

  • Samira AgbolaghiEmail author


Core–shell super-structures were developed via π-stacking of poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) as conductive shells onto carbon nanotubes (CNTs). Structure of conjugated polymers substantially determines their deposition model onto CNTs. Regioregular poly(3-hexyl thiophene) (P3HT) chains with hexyl side chains developed delicate nanofibrils with a base attached to CNT surface. However, PBDT-DTNT and PBDT-TIPS-DTNT-DT complicated conductive polymers with fused and infused thiophenic and benzenic rings preferred to be π-stacked with a face-on manner onto CNT surface and fabricate shells. Grafting of CNT surface with a polythiophene such as poly(3-dodecyl thiophene) (PDDT) introduced some defects onto the shell structure; because PBDT-DTNT and PBDT-TIPS-DTNT-DT polymers were not able to be π-deposited onto CNT surface grafted with PDDT. The PDDT grafts were considered as hindrances against the stacking of complicated polymers. The thickness of PBDT-DTNT and PBDT-TIPS-DTNT-DT shells ranged in 10–12 and 5–8 nm, respectively. Higher hindrance of TIPS side structures in PBDT-TIPS-DTNT-DT chains reflected thinner shells. By developing core–shells based on PBDT-TIPS-DTNT-DT and PBDT-DTNT, the conductivity reached 10.11 and 12.15 S/cm, respectively. Donor–acceptor core–shell nano-hybrids were then applied in active layer of photovoltaics. Efficiencies for CNT (core)-PBDT-DTNT (shell) and CNT (core)-PBDT-TIPS-DTNT-DT (shell) were 4.07 and 2.34%, respectively.

Supplementary material

10854_2018_353_MOESM1_ESM.docx (156 kb)
Supplementary material 1 (DOCX 155 KB)


  1. 1.
    K. Khan, A. Kausar, A.U. Rahman, Modern drifts in conjugated polymers and nanocomposites for organic solar cells: a review. Polym. Plast. Technol. Eng. 54(2), 140–154 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Bhadra, D. Khastgir, Degradation and stability of polyaniline on exposure to electron beam irradiation (structure–property relationship). Polym. Degrad. Stab. 92(10), 1824–1832 (2007)CrossRefGoogle Scholar
  3. 3.
    G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Dang, P. Zhou, L. Duan, X. Bao, R. Yang, W. Zhu, An efficient method to achieve a balanced open circuit voltage and short circuit current density in polymer solar cells. J. Mater. Chem. A 4(21), 8291–8297 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45(5), 723–733 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 27(18), 2938–2944 (2015)CrossRefGoogle Scholar
  7. 7.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)CrossRefGoogle Scholar
  8. 8.
    L. Ye, S. Zhang, W. Zhao, H. Yao, J. Hou, Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem. Mater. 26(12), 3603–3605 (2014)CrossRefGoogle Scholar
  9. 9.
    N. Wang, W. Chen, W. Shen, L. Duan, M. Qiu, J. Wang, C. Yang, Z. Du, R. Yang, Novel donor–acceptor polymers containing o-fluoro-p-alkoxyphenyl-substituted benzo [1, 2-b: 4, 5-b′] dithiophene units for polymer solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 4(26), 10212–10222 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6(9), 591–595 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, Donor–acceptor conjugated polymer based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133(25), 9638–9641 (2011)CrossRefGoogle Scholar
  13. 13.
    I. Osaka, T. Abe, M. Shimawaki, T. Koganezawa, K. Takimiya, Naphthodithiophene-based donor–acceptor polymers: versatile semiconductors for OFETs and OPVs. ACS Macro Lett. 1(4), 437–440 (2012)CrossRefGoogle Scholar
  14. 14.
    I. Osaka, M. Shimawaki, H. Mori, I. Doi, E. Miyazaki, T. Koganezawa, K. Takimiya, Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134(7), 3498–3507 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Guo, Y. Xia, F. Huang, G. Luo, J. Li, P. Zhang, Y. Zhu, C. Yang, H. Wu, Y. Cao, An alkylthieno-2-yl flanked dithieno [2, 3-d: 2′, 3′-d′] benzo [1, 2-b: 4, 5-b′] dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Adv. 5(17), 12879–12885 (2015)CrossRefGoogle Scholar
  16. 16.
    E. Bundgaard, F.C. Krebs, Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis (thiadiazole). Macromolecules 39(8), 2823–2831 (2006)CrossRefGoogle Scholar
  17. 17.
    T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D. Sweat, D.B. Tanner, A spray-processable, low bandgap, and ambipolar donor–acceptor conjugated polymer. J. Am. Chem. Soc. 131(8), 2824–2826 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Tong, L. An, J. Li, P. Zhang, P. Guo, C. Yang, Q. Su, X. Wang, Y. Xia, Large branched alkylthienyl bridged naphtho [1,2-c:5,6-c′] bis [1,2,5] thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. J. Macromol. Sci. Part A 54(3), 176–185 (2017)CrossRefGoogle Scholar
  19. 19.
    I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya, Naphthodithiophene–naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J. Am. Chem. Soc. 135(24), 8834–8837 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Hu, M. Wang, F. Huang, X. Gong, Y. Cao, 23% Enhanced efficiency of polymer solar cells processed with 1-chloronaphthalene as the solvent additive. Synth. Met. 164, 1–5 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Sun, J. Seifter, M. Wang, L.A. Perez, C. Luo, G.C. Bazan, F. Huang, Y. Cao, A.J. Heeger, Effect of molecular order on the performance of naphthobisthiadiazole-based polymer solar cells. Adv. Energy Mater. 4(6), 1–5 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv. Mater. 26(42), 7224–7230 (2014)CrossRefGoogle Scholar
  23. 23.
    V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, H. Murata, Nat. Photon. 9, 403–409 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Huo, Y. Zhou, Y. Li, Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid Commun. 30(11), 925–931 (2009)CrossRefGoogle Scholar
  25. 25.
    C. Cui, W.Y. Wong, Y. Li, Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ. Sci. 7(7), 2276–2284 (2014)CrossRefGoogle Scholar
  26. 26.
    J.H. Kim, M. Lee, H. Yang, D.H. Hwang, A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. J. Mater. Chem. A 2(18), 6348–6352 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Wood, J.H. Kim, D.H. Hwang, J.S. Kim, Effects of fluorination and side chain branching on molecular conformation and photovoltaic performance of donor–acceptor copolymers. Chem. Mater. 27(12), 4196–4204 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Gu, T.M. Swager, Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv. Mater. 20(23), 4433–4437 (2008)CrossRefGoogle Scholar
  29. 29.
    R. Allen, L. Pan, G.G. Fuller, Z. Bao, Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers. ACS Appl. Mater. Interfaces 6(13), 9966–9974 (2014)CrossRefGoogle Scholar
  30. 30.
    X.I.A.O.L.E.I. Liu, J. Ly, S.O.N.G. Han, D.A.I.H.U.A. Zhang, A. Requicha, M.E. Thompson, C.H.O.N.G.W.U. Zhou, Synthesis and electronic properties of individual single-walled carbon nanotube/polypyrrole composite nanocables. Adv. Mater. 17(22), 2727–2732 (2005)CrossRefGoogle Scholar
  31. 31.
    I.A. Tchmutin, A.T. Ponomarenko, E.P. Krinichnaya, G.I. Kozub, O.N. Efimov, Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41(7), 1391–1395 (2003)CrossRefGoogle Scholar
  32. 32.
    R.G. Goh, N. Motta, J.M. Bell, E.R. Waclawik, Effects of substrate curvature on the adsorption of poly (3-hexylthiophene) on single-walled carbon nanotubes. Appl. Phys. Lett. 88(5), 053101 (2006)CrossRefGoogle Scholar
  33. 33.
    A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40(9), 1721–1725 (2001)CrossRefGoogle Scholar
  34. 34.
    J. Chen, H. Liu, W.A. Weimer, M.D. Halls, D.H. Waldeck, G.C. Walker, Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124(31), 9034–9035 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations