Advertisement

Light harvesting and effective surface passivation using electrodeposited Y2O3 for broadband absorption enhancement in silicon solar cells

  • L. DerbaliEmail author
  • M. Dkhili
  • S. Mezni
  • S. Zargouni
  • M. Ouadhour
  • S. El Whibi
  • H. Ezzaouia
Article
  • 19 Downloads

Abstract

This paper reports investigation on passivation properties of electrodeposited yttrium oxide Y2O3 thin films on monocrystalline silicon substrate. We examined its application as an effective light harvesting and a passivation layer to enhance the electrical properties of the processed solar cell. We found that the deposited Y2O3 thin film is excellent antireflection coating and post deposition sintering acts to passivate the coated monocrystalline silicon substrate. Next, the coated substrates were annealed at various temperatures for a short duration. The crystallinity of the deposited yttrium oxide thin film was analyzed by means of X-ray diffraction. The latter shows an obvious dependence with the annealing temperature. Surface morphology was examined by a field emission scanning electron microscope and revealed a high tendency for light scattering through its particular morphology, essentially after post-annealing at 650 °C. The effective minority carrier lifetime measurements, using a WTC-120 photoconductance lifetime tester, show an obvious increase indicating the vital role of yttrium oxide on the passivation of the front surface. The electrical properties were studied using the Hall effect and the Van Der Pauw methods to measure the resistivity and mobility of the majority carriers. The effect of the deposited thin film on the optoelectronic properties was evaluated by means of the internal quantum efficiency that was improved noticeably, proving a large decrease of the recombination activities mainly at the front surface. These results show clearly that the deposited layer has a double effect: a passivating layer and an antireflective layer increasing the light trapping at the front side of the processed silicon solar cell.

Notes

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research, Tunisia.

References

  1. 1.
    A. Zarroug, Z.B. Hamed, L. Derbali, H. Ezzaouia, J. Cryst. Growth 463, 95–99 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Martinuzzi, I. Périchaud, F. Warchol, Sol. Energy Mater. Sol. Cells 80, 343–353 (2003)CrossRefGoogle Scholar
  3. 3.
    G. Claudio, K. Bass, K. Heasman, A. Cole, S. Roberts, S. Watson, M. Boreland, Superlattices Microstruct. 45, 234–239 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Derbali, M. Dkhili, S. Zargouni, M. Ouadhour, R. Riahi, H. Ezzaouia, Superlattices Microstruct. 123, 427–435 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes et al., J. Mater. Sci.: Mater. Electron. 26, 9552 (2015)Google Scholar
  6. 6.
    M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci.: Mater. Electron. 26, 5440 (2015)Google Scholar
  7. 7.
    F.T.Y. Tan, E.E. Gadner, W.K. Tice, Appl. Phys. Lett. 30, 175 (1997)CrossRefGoogle Scholar
  8. 8.
    M. Hajji, A. Ben Jaballah, M. Hassen, N. Khedher, B. Bessais, H. Ezzaouia, H. Rahmouni, A. Selmi, J. Mater. Sci. 40, 1 (2005)CrossRefGoogle Scholar
  9. 9.
    L. Derbali, H. Ezzaouia, J. Nanosci. Res. Lett. 7, 424 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Zarroug, L. Derbali, H. Ezzaouia, Mater. Sci. Semicond. Process. 30, 451–455 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Derbali, S. El Whibi, A. Zarroug, J. Bertomeu, H. Ezzaouia, J. Mater. Sci.: Mater. Electron. 29, 5738 (2018)Google Scholar
  12. 12.
    L. Derbali, H. Ezzaouia, Appl. Surf. Sci. 271, 234–239 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Riahi, L. Derbali, B. Ouertani, H. Ezzaouia, Appl. Surf. Sci. 404, 34–39 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Jhansirani, R.S. Dubey, M.A. More, S. Singh, Results Phys. 6, 1059–1063 (2016)CrossRefGoogle Scholar
  15. 15.
    S.K. Sardana, V.S.N. Chava, V.S.N. Komarala, Appl. Surf. Sci. 347, 651–656 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Chaoui, A. Messaoud, Desalination 209, 118–121 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Ghosh, S. Mitra, H. Saha, S.K. Datta, C. Banerjee, Mater. Sci. Eng. B 215, 29–36 (2017)CrossRefGoogle Scholar
  18. 18.
    J.-J. Huang, C.-C. Lin, D.-S. Wuu, Surf. Coat. Technol. 320, 252–258 (2017)CrossRefGoogle Scholar
  19. 19.
    M.A. Green, Solar Cells: Operating Principles, Technology and System Applications (The University of New South Wales, Kensington, 1986)Google Scholar
  20. 20.
    L. Derbali, A. Zarroug, H. Ezzaouia, Renew. Energy 77, 331–337 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Bansal, P. Srivastava, B.R. Singh, J. Mater. Sci.: Mater. Electron. 26, 639 (2015)Google Scholar
  22. 22.
    R.J. Gaboriaud, F. Paumier, F. Paillaoux, P. Guerin, Mater. Sci. Eng. B 109, 34 (2004)CrossRefGoogle Scholar
  23. 23.
    R. Ivanic, V. Rehacek, I. Novotny, V. Breternitz, L. Spiess, C.H. Knedlik, V. Tvarozek, Vacuum 6, 229 (2001)CrossRefGoogle Scholar
  24. 24.
    L. Wang, L. Shi, N. Liao, H. Jia, X. Yu, P. Du, Z. Xi, D. Jin, Thin Solid Films 518, 4817–4820 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Karle, V.-S. Dang, M. Prenzel, D. Rogalla, H.-W. Becker, A. Devi, Chem. Vap. Deposition 21, 335–342 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Derbali
    • 1
    Email author
  • M. Dkhili
    • 1
    • 3
  • S. Mezni
    • 1
    • 3
  • S. Zargouni
    • 1
    • 4
  • M. Ouadhour
    • 1
    • 2
  • S. El Whibi
    • 1
    • 2
  • H. Ezzaouia
    • 1
  1. 1.Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA)Research and Technology Center of Energy (CRTEn)Hammam-LifTunisia
  2. 2.Carthage UniversityTunisTunisia
  3. 3.El Manar UniversityTunisTunisia
  4. 4.Tunis University, ENSITTunisTunisia

Personalised recommendations