Advertisement

Nonlinear optical response of ZnO/HfO2 core/shell nanorod arrays under continuous wave laser irradiation

  • Salimeh KimiagarEmail author
  • Fahimeh Abrinaei
  • Vahid Najafi
  • Bartlomiej Witkowski
  • Rafal Pietruszka
  • Marek Godlewski
Article
  • 44 Downloads

Abstract

ZnO nanorods (NRs) were synthesized by the hydrothermal method and coated by HfO2 sell layers by using the atomic layer deposition to form ZnO/HfO2 core/shell NRs arrays. XRD showed the hexagonal wurtzite structure of ZnO NRs and tetragonal phase of HfO2. Scanning electron microscope and atomic force microscopy analysis illustrated vertically well-aligned ZnO/HfO2 core/shell NRs structure. Optical property was studied by PL which revealed that the near band-edge emission of the ZnO NRs improved after coating by HfO2 shells. The band gap energy was estimated about 3.51 eV by UV–Vis. For the first time, the measurements of nonlinear optical (NLO) properties of ZnO/HfO2 core/shell NRs structures have been performed by using a continuous-wave (cw) Nd:YAG laser at 532 nm by the Z-scan technique. A negative nonlinear refractive index and a positive absorption coefficient were calculated equal to 8.6 × 10−6 cm2/W and 1.75 cm/W for ZnO/HfO2 core/shell NRs, respectively. A third-order NLO susceptibility of ZnO/HfO2 core/shell NRs was measured of the order of 10−2 esu which is a large value. The results suggest that ZnO/HfO2 core/shell NRs are promising candidates for NLO applications.

References

  1. 1.
    K. Mahmood, S.B. Park, H.J. Sung, R. Article, Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C 1(18), 3138–3149 (2013)CrossRefGoogle Scholar
  2. 2.
    A.B. Djurišić, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2(8-9), 944–961 (2006)CrossRefGoogle Scholar
  3. 3.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011)CrossRefGoogle Scholar
  4. 4.
    Z.L. Wang, Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications. Chin. Sci. Bull. 54(22), 4021 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125(15), 4430–4431 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Tang et al., Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6(9), 568 (2011)CrossRefGoogle Scholar
  7. 7.
    L.J. Lauhon et al., Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Willander et al., Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20(33), 332001 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Richters et al., Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires. Nanotechnology 19(30), 305202 (2008)CrossRefGoogle Scholar
  10. 10.
    C.-Y. Chen et al., ZnO/Al2O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties. Nanotechnology 20(18), 185605 (2009)CrossRefGoogle Scholar
  11. 11.
    C. Mahata et al., Comparative study of atomic-layer-deposited stacked (HfO2/Al2O3) and nanolaminated (HfAlO x) dielectrics on In0. 53Ga0. 47As. ACS Appl. Mater. Interfaces 5(10), 4195–4201 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang et al., Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core–shell nanowires. Nanoscale 7(37), 15462–15468 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Modreanu et al., Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films. Appl. Surf. Sci. 253(1), 328–334 (2006)CrossRefGoogle Scholar
  14. 14.
    T.J. Bright et al., Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared. Thin Solid Films 520(22), 6793–6802 (2012)CrossRefGoogle Scholar
  15. 15.
    W.-C. Sun et al., Improved characteristics of near-band-edge and deep-level emissions from ZnO nanorod arrays by atomic-layer-deposited Al2O3 and ZnO shell layers. Nanoscale Res. Lett. 6(1), 556 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Chen et al., Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core–shell nanowires. Nano Lett. 13(2), 734–739 (2013)CrossRefGoogle Scholar
  17. 17.
    F. Abrinaei, M. Shirazi, J Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation. Mater. Sci. 28, 17541–17550 (2017)Google Scholar
  18. 18.
    S. Kimiagar, F. Abrinaei, Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites. Nanophotonics 7(1), 243–251 (2018)CrossRefGoogle Scholar
  19. 19.
    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Spectral and nonlinear optical characteristics of ZnO nanocomposites. Sci. Adv. Mater 2(2), 117–137 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Mazur, D. Kaczmarek, J. Domaradzki, D. Wojcieszak, A. Poniedzialek, Influence of material composition on structural and optical properties of HfO2-TiO2 mixed oxide coatings. Coatings 6, 13 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Wan, X. Zhou, Formation mechanism of hafnium oxide nanoparticles by a hydrothermal route. RSC Adv. 7, 7763–7773 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Zhao, D. Vanderbilt, First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 56, 233106 (2002)CrossRefGoogle Scholar
  23. 23.
    M. Modreanu, Optical characterization of high-k dielectrics HfO2 thin films obtained by MOCVD. Proc. SPIE 4876, 1236 (2002)CrossRefGoogle Scholar
  24. 24.
    T. Ito, M. Maeda, K. Nakamura, H. Kato, Y. Ohki, Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons. J. Appl. Phys. 97, 054104 (2005)CrossRefGoogle Scholar
  25. 25.
    J. Dabrowski, V. Zavodinsky, A. Fleszar, Pseudopotential study of PrO2 and HfO2 in fluorite phase. Microelectron. Reliab. 41, 1093 (2001)CrossRefGoogle Scholar
  26. 26.
    X. Huang, M. Wang, M.G. Willinger, L.D. Shao, D.S. Su, X.M. Meng, Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow zns nanotube arrays. ACS Nano 6, 7333 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Shi, Y.M. Xu, S.K. Hark, Y. Liu, S. Wang, L.M. Peng, K.W. Wong, Q. Li, Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett. 7, 3559 (2007)CrossRefGoogle Scholar
  28. 28.
    C.Y. Chen, C.A. Lin, M.J. Chen, G.R. Lin, J.H. He, ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties. Nanotechnology 20, 185605 (2009)CrossRefGoogle Scholar
  29. 29.
    D. Zhao, X.X. Zhang, H.B. Dong, L.J. Yang, Q.S. Zeng, J.Z. Li, L. Cai, X. Zhang, P.S. Luan, Q. Zhang, Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters. Nanoscale 5, 4443 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
  31. 31.
    X.Q. Meng, H.W. Peng, Y.Q. Gai, J.B. Li, Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires. J. Phys. Chem. C 114, 1467 (2010)CrossRefGoogle Scholar
  32. 32.
    S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Sheik-bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  34. 34.
    M. Sheik-bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Salimeh Kimiagar
    • 1
    Email author
  • Fahimeh Abrinaei
    • 2
  • Vahid Najafi
    • 3
  • Bartlomiej Witkowski
    • 4
  • Rafal Pietruszka
    • 4
  • Marek Godlewski
    • 4
  1. 1.Nano Research Lab (NRL), Department of Physics, Central Tehran Branch (IAUCTB)Islamic Azad UniversityTehranIran
  2. 2.Department of Physics, East Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Young Researchers and Elit Club, Central Tehran BranchIslamic Azad UniversityTehranIran
  4. 4.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations