Advertisement

Effect of magnesium deficiency on magnetic properties tuning and cation redistributions of magnesium ferrite nanoparticles

  • Zein K. Heiba
  • Mohamed Bakr MohamedEmail author
Article
  • 53 Downloads

Abstract

Magnesium nano ferrite Mg1−xFe2O4 with deficient Mg (0 ≤ x ≤ 0.5) has been prepared with the co-precipitation method. The Mg deficiency was examined from the samples elemental compositions obtained by energy-dispersive X-ray spectroscopy. The impact of the Mg deficiency on the structural and magnetic characteristics has been inspected applying X-ray diffraction, Fourier transforms infrared and vibrating sample magnetometer. The structural analysis applying Rietveld method indicated the variation of cation distribution between the octahedral B-site and tetrahedral A-site with the Mg content. The lattice parameter, crystallite size, oxygen coordinates, bond angles and bond lengths are calculated as the function of Mg-deficient content in the samples. From the analysis, the defect spinel structure Mg1−xFe2O4 with Mg2+ deficiency could be considered as a solid solution of stoichiometric (1-x)MgFe2O4 and (x)\({\text{Fe}}_{{2.667}}^{{3+}}{\square _{0.333}}{{\text{O}}_4}\), (□ symbolize cation vacancies) which corresponding to a general formula \(({\text{Mg}}_{{y - x}}^{{2+}}{\text{Fe}}_{{1 - y}}^{{3+}})[{\text{Mg}}_{{1 - y}}^{{2+}}{\text{Fe}}_{{1+y - x/3}}^{{3+}}{\square _{x/3}}]{{\text{O}}_4}\). Fourier transform infrared was used to identify the different ions (Fe3+, Fe2+, Mg2+) in each sample and their location either in A or B sites. The magnetic measurement showed that the samples exhibited a superparamagnetic behavior. Yafet-Kittel and core–shell models were applied in order to understand the samples magnetic behavior. The competition between the amount of Fe2+ in B site and crystallite size controlled the coercivity and magnetocrystalline anisotropy behavior of the samples.

References

  1. 1.
    J.B. Goodenough, Magnetism and Chemical Bond (Wiley, NewYork, 1966)Google Scholar
  2. 2.
    D. Bahadur, Bull. Mater. Sci. 15, 431 (1992)CrossRefGoogle Scholar
  3. 3.
    M. Reza Barati, C. Selomulya, K. Suzuki, J. Appl. Phys. 115, 17B 522 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006)Google Scholar
  5. 5.
    G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, S.A. Rossini, J. Chem. Soc. Faraday Trans. 92, 4687 (1996)CrossRefGoogle Scholar
  6. 6.
    Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Sens. Actuators B 107, 600 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Shimizu, H. Arai, T. Seiyama, Sens. Actuators B 7, 11 (1985)CrossRefGoogle Scholar
  8. 8.
    Y. Yin, N. Huo, W. Liu, Z. Shi, Q. Wang, Y. Ding, J. Zhang, S. Yang, Scr. Mater. 110, 92 (2016)CrossRefGoogle Scholar
  9. 9.
    F.F. Abdel-Mohsen, H.S. Emira, Pigment Resin Technol. 34, 312 (2005)CrossRefGoogle Scholar
  10. 10.
    Q.A. Pankhurst, J. Connoly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003)CrossRefGoogle Scholar
  11. 11.
    Z.K. Heiba, M.B. Mohamed, H.H. Hamdeh, M.A. Ahmed, J. Alloys Compd. 618, 755 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.K. Heiba, A.M. Wahba, M.B. Mohamed, J. Mol. Struct. 1147, 668 (2017)CrossRefGoogle Scholar
  13. 13.
    N. Aliyan, S.M. Mirkazemi, S.M. Masoudpanah, S. Akbari, Appl. Phys. A 123, 446 (2017)CrossRefGoogle Scholar
  14. 14.
    N.K. Thanh, T.T. Loan, N.P. Duong, L.N. Anh, D.T. Th. N.H. Nguyet, S. Nam, W. Soontaranon, Klysubun, T.D. Hien, Phys. Status Solidi A 215(1), 1700397 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Feng, S. Li, Y. Zheng, Z. Yi, Y. He, Y. Xu, J. Alloys Compd. 699, 521 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, J. Magn. Magn. Mater. 441, 409 (2017)CrossRefGoogle Scholar
  17. 17.
    M.B. Mohamed, A.M. Wahba, M. Yehia, Mater. Sci. Eng. B 190, 52–58 (2014)CrossRefGoogle Scholar
  18. 18.
    Z.K. Heiba, M.B. Mohamed, A.M. Wahba, M.I. Almalowi, Appl. Phys. A 124(4), 290 (2018)CrossRefGoogle Scholar
  19. 19.
    Z.K. Heiba, M.B. Mohamed, M.A. Ahmed, M.A.A. Moussa, H.H. Hamdeh, J. Alloys Compd. 586, 773 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Lutterotti, MAUD, version 2.71, http://maud.radiographema.eu/ (2016)
  21. 21.
    M. Gateshki, V. Petkov, S.K. Pradhan, T. Vogt, J. Appl. Crystallogr. 38, 772 (2005)CrossRefGoogle Scholar
  22. 22.
    G.W. van Oosterhout, C.J.M. Rooijans, Nature 181, 44 (1958)CrossRefGoogle Scholar
  23. 23.
    K. Haneda, A.H. Morrish, Solid State Commun. 22, 779 (1977)CrossRefGoogle Scholar
  24. 24.
    C. Greaves, J. Solid State Chem. 49, 325 (1983)CrossRefGoogle Scholar
  25. 25.
    N. Shmakov, G.N. Kryukova, S.V. Tsibula, A.I. Chuvilin, L.P. Solovyeva, J. Appl. Crystallogr. 28, 141 (1995)CrossRefGoogle Scholar
  26. 26.
    E. Wolska, W. Wolski, J. Kaczmarek, E. Riedel, D. Prick, Solid State Ionics 51, 231 (1992)CrossRefGoogle Scholar
  27. 27.
    J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (Philips, Eindhoven, 1959), p. 384Google Scholar
  28. 28.
    W.B. White, B.A. DeAngelis, Spectrochim Acta 23A, 985 (1967)CrossRefGoogle Scholar
  29. 29.
    R.D. Waldron, Phys. Rev. 99, 1727 (1955)CrossRefGoogle Scholar
  30. 30.
    G.C. Allen, M. Paul, Appl Spectrosc 49, 451 (1995)CrossRefGoogle Scholar
  31. 31.
    S.C. Watawe, B.D. Sutar, B.D. Sarwade, B.K. Chougule, Int. J. Inorg. Mater. 3, 819 (2001)CrossRefGoogle Scholar
  32. 32.
    H.M. Zaki, S. Al-Heniti, N. AlShehri, Physica B 436, 157 (2014)CrossRefGoogle Scholar
  33. 33.
    H.M. Zaki, H.A. Dawoud, Physica B 405, 4476 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, Mater. Lett. 58, 1092 (2004)CrossRefGoogle Scholar
  35. 35.
    V. Sepelák, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker, Chem. Mater. 18, 3057 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Millan, A. Urtizberea, N.J.O. Silva, F. Palacio, V.S. Amaral, E. Snoeck, V. Serin, J. Magn. Magn. Mater. 312, L5 (2007)CrossRefGoogle Scholar
  37. 37.
    V.A. Potakovav, P. Romanonv, D. Zverv, O.I. Gromovenko, E.V. Rubalskaya, Phys. Status Solidi A 4(2), 327 (1971)CrossRefGoogle Scholar
  38. 38.
    I. Bsoula, S.H. Mahmood, J. Alloy. Compd. 489, 110 (2010)CrossRefGoogle Scholar
  39. 39.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, J. Alloys Compd. 547, 118 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTaibah UniversityAl-Madinah Al-MunawaraSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceAin shams UniversityCairoEgypt

Personalised recommendations