Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior

  • Yong Chen
  • Xiangyu Liu
  • Jiwen Xu
  • Tao Yang
  • Zhenchun Li
  • Guohua ChenEmail author


Yb3+/Tb3+/Ho3+ tri-doped transparent phosphate glass–ceramics (GCs) were successfully synthetized by a conventional melt-quenching technique with subsequent glass crystallization. The formation of phosphate nanocrystals (NCs) with leucite structure was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected-area electron diffraction (SAED). The variation of the decay curves confirms the accumulation of active centers into the NCs lattice. Hence, the UC emission intensity of Yb3+/Tb3+/Ho3+ doped GC610 sample is greatly enhanced relative to that in precursor glass (PG). And the UC energy transfers processes were systematically analysis. The result shows that the energy transfer of Ho3+→Tb3+ exists while Yb3+ as a sensitizer ion. Furthermore, the temperature-dependent UC luminescence and temperature sensing behaviors of the prepared materials based on the thermally coupled levels of Tb3+: 5D4 and Ho3+: 5F5 in the temperature range of 298–648 K were systematically investigated, to explore its possible application as optical thermometric medium, by utilizing the fluorescence intensity ratio (FIR) technique. The relative sensitivity (Sr) of 7.5 × 10−3 K−1 and absolute sensitivity (Sa) of 22 × 10−3 K−1 are achieved in the Yb3+/Tb3+/Ho3+ tri-doped GC. This GC materials is a very promising candidate for optical temperature sensors.



This work was financially supported by the Natural Science Foundation of Guangxi (2017GXNSFDA198023) and GUET Excellent Graduate Thesis Program (16YJPYSS31).


  1. 1.
    F. Wang, R.R. Deng, J. Wang, Q.X. Wang, Y. Han, H.M. Zhu, X.Y. Chen, X.G. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011)CrossRefGoogle Scholar
  2. 2.
    P.D. Howes, R. Chandrawati, M.M. Stevens, Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Sarakovskis, J. Grube, G. Doke, M. Springis, Selective excitation of up-conversion luminescence by Yb3+-Er3+ energy transfer in glass and crystalline phase of oxyfluoride glass ceramics. Opt. Mater. 32, 832–835 (2010)CrossRefGoogle Scholar
  4. 4.
    D.K. Khatua, A. Kalaskar, R. Ranjan, Tuning photoluminescence response by electric field in the lead-free piezoelectric Na1/2Bi1/2TiO3-BaTiO3. Phys. Rev. Lett. 116, 117601 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Zheng, L.H. Luo, Linear response fluorescent temperature-sensing properties based on Stark sublevels of Er3+-doped Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Yb1/2Nb1/2)O3 ceramics. Ceram. Int. 44, 12670–12675 (2018)CrossRefGoogle Scholar
  6. 6.
    B. Dong, B.S. Cao, Y.Y. He, Z. Liu, Z.P. Li, Z.Q. Feng, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24, 1987–1993 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, On surface temperature measurements with thermographic phosphors: a review, Prog. Energy Combust. Sci. 39, 37–60 (2013)CrossRefGoogle Scholar
  8. 8.
    X.D. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Jaque, F. Vetrone, Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012)CrossRefGoogle Scholar
  10. 10.
    X.F. Wang, Q. Liu, Y.Y. Bu, C.-S. Liu, T. Liu, X.H. Yan, Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 5, 86219–86236 (2015)CrossRefGoogle Scholar
  11. 11.
    M.Y. Ding, M. Zhang, C.H. Lu, Yb3+/Tm3+/Ho3+ tri-doped YPO4 submicroplates: a promising optical thermometer operating in the first biological window. Mater. Lett. 209, 52–55 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Xu, X.Y. Gao, L.J. Zheng, Z.G. Zhang, W.W. Cao, An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic. Sens. Actuators B 173, 250–253 (2012)CrossRefGoogle Scholar
  13. 13.
    D.Q. Chen, S. Liu, X.Y. Li, S. Yuan, P. Huang, Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+: YF3 nanocrystals embedded glass ceramic. J. Eur. Ceram. Soc. 37, 4939–4945 (2017)CrossRefGoogle Scholar
  14. 14.
    P. Haro-González, I.R. Martín, L.L. Martín, F. Sergio, C. León-Luis, V. Pérez-Rodríguez, Lavín, Characterization of Er3+ and Nd3+ doped strontium barium niobate glass ceramic as temperature sensors. Opt. Mater. 33, 742–745 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Chen, G.H. Chen, X.Y. Liu, J.W. Xu, T. Yang, C.L. Yuan, C.R. Zhou, Down-conversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass. J. Non-Cryst. Solids 484, 111–117 (2018)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Bu, S.J. Cheng, X.F. Wang, X.H. Yan, Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics. Appl. Phys. A 121, 1171–1178 (2015)CrossRefGoogle Scholar
  17. 17.
    D.Y. Wang, N. Kodama, Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+. J. Solid State Chem. 182, 2219–2224 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, Y.Q. Zhang, X.M. Jiang, Investigations on upconversion luminescence of K3Y(PO4)2: Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing. J. Alloys Compd. 748, 438–445 (2018)CrossRefGoogle Scholar
  19. 19.
    C.X. Li, J. Dai, D.G. Deng, S.Q. Xu, Synthesis, structure and optical properties of blueemitting phosphor Sr4La(PO4)3O: Eu2+ for n-UV white-light-emitting diodes. Optik. 127, 2715–2719 (2016)CrossRefGoogle Scholar
  20. 20.
    X.S. Qiao, X.P. Fan, M.Q. Wang, X.H. Zhang, Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals. J. Non-Cryst. Solids 354, 3273–3277 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, G.H. Chen, X.Y. Liu, T. Yang, Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped transparent phosphate glass ceramics. J. Lumin. 195, 314–320 (2018)CrossRefGoogle Scholar
  22. 22.
    P. Du, L.H. Luo, Q.Y. Yue, W.P. Li, The simultaneous realization of high-and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles. Mater. Lett. 143, 209–211 (2015)CrossRefGoogle Scholar
  23. 23.
    L.L. Xing, W.Q. Yang, D.C. Ma, R. Wang, Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ co-doped LiNbO3 crystal. Sens. Actuators B 221, 458–462 (2015)CrossRefGoogle Scholar
  24. 24.
    V. Lojpur, S. Ćulubrk, M.D. Dramićanin, Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles. J. Lumin. 169, 534–538 (2016)CrossRefGoogle Scholar
  25. 25.
    X.M. Li, J.K. Cao, Y.L. Wei, Z.R. Yang, H. Guo, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics. J. Am. Ceram. Soc. 98, 3824–3830 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Yu, S. Li, Y.S. Qi, W. Lu, X. Yu, X.H. Xu, J.B. Qiu, Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix. J. Lumin. 194, 433–439 (2018)CrossRefGoogle Scholar
  27. 27.
    J.K. Cao, F.F. Hu, L.P. Chen, H. Guo, C.K. Duan, M. Yin, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics. J. Alloys Compd. 693, 326–331 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations