Investigation of local atomic structure of Ni doped SnO2 thin films via X-ray absorption spectroscopy and their magnetic properties

  • Mayuri Sharma
  • Rezq Naji AljawfiEmail author
  • Kavita Kumari
  • K. H. Chae
  • S. Gautam
  • S. Dalela
  • P. A. AlviEmail author
  • Shalendra KumarEmail author


Nanostructured Ni (10 at.%) doped SnO2 thin films were grown on Si (100) substrate via pulsed laser deposition technique in ultrahigh vacuum (UHV) chamber and oxygen partial pressure (Po2) environment. The influence of UHV and Po2 growth conditions on the ferromagnetic (FM) ordering, electronic states and short-range structure around Ni ions embedded in the SnO2 network has been investigated. Synchrotron X-ray diffraction results revealed the single-phase nature of SnO2 rutile structure without any foreign peak, and the mean crystallite sizes <D> were found to be 12 and 25 nm for UHV and Po2 deposited films respectively. The crystal growth in UHV chamber, introduced deliberately the oxygen vacancy (Vo) and reduced partially the valence state of Sn4+ (SnO2) ions to Sn3+ (Sn2O3), whereas the Po2 environment optimized the crystallinity and enhanced the oxygen stoichiometry (O:Sn = 2:1) by healing the oxygen vacancies. These details have been obtained by means of Raman spectra, near edge X-ray absorption fine structure at Ni L3,2, O K edges and XANES spectra at Ni K edge. The films showed FM response and the saturation moments increase clearly from 4.4 emu/cm3 (0.33 µB/Ni) for Po2 deposited film to 5.9 emu/cm3 (0.45 µB/Ni) for the film grown in UHV condition. Hence, the enhanced magnetization in UHV condition gives clear evidence on the importance of oxygen vacancies to activate the FM ordering. The role of Vo2+, in the first-shell of oxygen coordination around Sn/Ni ions, to achieve the FM response has been discussed on the basis of bound magnetic polaron and charge transfer percolation mechanisms.


SnO2 thin film Defects Synchrotron XRD XANES spectra Magnetism 



One of the author (Shalendra Kumar) would like to thank the Department of Science and Technology, New Delhi (YSS/2015/001262) for financial support.


  1. 1.
    F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, B.H. Koo, Acta Mater. 60, 5190 (2012)CrossRefGoogle Scholar
  2. 2.
    M.S. Anwar, S. Kumar, N. Arshi, F. Ahmed, Y.J. Seo, C.G. Lee, B.H. Koo, J. Alloy. Compd. 509, 4525 (2011)CrossRefGoogle Scholar
  3. 3.
    E.C. Rodrigues, S.K. Sharma, A.S. de Menezes, K.H. Chae, S. Gautam, R.N. Aljawfi, S. Kumar, Mater. Res. Bull. 83, 534 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Kumar, S. Gautam, G.W. Kim, F. Ahmed, M.S. Anwar, K.H. Chae, H.K. Choi, H. Chung, B.H. Koo, Appl. Surf. Sci. 257, 10557 (2011)CrossRefGoogle Scholar
  5. 5.
    R.N. Aljawf, S. Mollah, J. Magn. Magn. Mater. 323, 3126 (2011)CrossRefGoogle Scholar
  6. 6.
    Z. Chen, J.K.L. Lai, C.H. Shek, H. Chen, J. Mater. Res. 18, 1289 (2003)CrossRefGoogle Scholar
  7. 7.
    N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72, 045336 (2005)CrossRefGoogle Scholar
  8. 8.
    C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, Phys. Rev. B 74, 115307 (2006)CrossRefGoogle Scholar
  9. 9.
    J.M.D. Coey, J. Appl. Phys. 97, 10D313 (2005)CrossRefGoogle Scholar
  10. 10.
    J.M.D. Coey, M. Venkatesand. B. Fitzgerald, Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  11. 11.
    N.R.S. Farley, C.R. Staddon, L. Zhao, K.W. Edmonds, B.L. Gallagher, D.H.J. Gregory, J. Mater. Chem. 14, 1087 (2004)CrossRefGoogle Scholar
  12. 12.
    R.N. Aljawfi, F. Rahman, D.K. Shukla, Mater. Lett. 99, 18 (2013)CrossRefGoogle Scholar
  13. 13.
    M.H. Carvalho, E.C. Pereira, A.J.A. de Oliveira, RSC Adv. 8, 3958 (2018)CrossRefGoogle Scholar
  14. 14.
    N.H. Hong, A. Ruyter, W. Prellier, J. Sakai, N.T. Huong, J. Phys. Condens. Matter 17, 6533 (2005)CrossRefGoogle Scholar
  15. 15.
    P.I. Archer, P.V. Radovanovic, S.M. Heald, D.R. Gamelin, J. Am. Chem. Soc. 127, 14479 (2005)CrossRefGoogle Scholar
  16. 16.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)CrossRefGoogle Scholar
  17. 17.
    R.N. Aljawfi, A. Vij, K.H. Chae, S. Dalela, P.A. Alvi, M.A. AL-Maghrabi, S. Kumar, J. Appl. Surf. Sci. 445, 287 (2018)CrossRefGoogle Scholar
  18. 18.
    R.N. Aljawfi, K. Kumari, A. Vij, M. Hashim, K.H. Chae, P.A. Alvi, S. Kumar, J. Mater. Sci.: Mater. Electron. 29, 5982 (2018)Google Scholar
  19. 19.
    W.S. Rasband, ImageJ (U.S. National Institutes of Health, Bethesda, 1997–2012).
  20. 20.
    B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)CrossRefGoogle Scholar
  21. 21.
    C. Alfonso, A. Charai, A. Armigliato, D. Narducci, Appl. Phys. Lett. 68(9), 1208 (1996)CrossRefGoogle Scholar
  22. 22.
    W.A. Weyl, T. Forland, Ind. Eng. Chem. 42, 257 (1950)CrossRefGoogle Scholar
  23. 23.
    D. Bersani, P.P. Lottici, X.-Z. Ding, Appl. Phys. Lett. 72, 73 (1998)CrossRefGoogle Scholar
  24. 24.
    E. Stavitski, F.M.F. de Groot, The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Landers, M. Grafe, R.J. Gilkes, M. Saunders, M.A. Wells, Aust. J. Earth Sci. 58, 745 (2011)CrossRefGoogle Scholar
  26. 26.
    S.O. Kucheyev, T. van Buuren, T.F. Baumann, J.H. Satcher, T.M. Willey, R.W. Meulenberg, T.E. Felter, J.F. Poco, S.A. Gammon, L.J. Terminello, Phys. Rev. B 69, 245102 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Fandeur, F.G. Morin, L. Olivi, A. Cogni, J.P. Ambrosi, F. Guyot, E. Fritsch, Am. Mineral. 94, 710 (2009)CrossRefGoogle Scholar
  28. 28.
    P. Erhart, K. Albe, A. Klein, Phys. Rev. B 73, 205203 (2006)CrossRefGoogle Scholar
  29. 29.
    J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, New J. Phys. 12, 053025 (2010)CrossRefGoogle Scholar
  30. 30.
    S.S. Farvid, T. Sabergharesou, L.N. Hutfluss, M. Hegde, E. Prouzet, P.V. Radovanovic, J. Am. Chem. 136, 7669 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithBanasthaliIndia
  2. 2.Department of PhysicsIbb UniversityIbbYemen
  3. 3.Electronic Materials & Nanomagnetism Lab, Department of Applied Physics, Amity School of Applied SciencesAmity University HaryanaGurgaonIndia
  4. 4.Advanced Analysis CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  5. 5.Dr. S. S. Bhatnagar University Institute of Chemical Engineering & TechnologyPanjab UniversityChandigarhIndia
  6. 6.Department of Pure & Applied PhysicsUniversity of KotaKotaIndia

Personalised recommendations