Effect of aging temperature on microstructure and mechanical properties of Sn–9Zn–xZrC solder joints

  • Li YangEmail author
  • Di Wei
  • Yaocheng ZhangEmail author
  • Wei Jiang
  • Yifeng Xiong


The effect of aging temperature on microstructure and mechanical properties of Sn–9Zn–xZrC (x = 0, 0.06) solder joints was investigated. The results showed that the wettability of Sn–9Zn based alloys was improved by ZrC nanoparticles, the spreading areas of Sn–9Zn–xZrC (x = 0–0.12) were increased firstly then decreased with increasing ZrC content. The spreading area of Sn–9Zn was about 143.64 mm2 and reached maximum about 190.92 mm2 of Sn–9Zn–0.06ZrC. The microstructure of Sn–9Zn–0.06ZrC solder alloy consisted of β-Sn, Sn–Zn eutectic and intermetallic compounds (IMCs), and the microstructure of Sn–9Zn alloy was refined by adding appropriate amounts of ZrC nanoparticles. The interfacial IMCs at the β-Sn boundary in the Sn–9Zn–0.06ZrC solder joint was Cu5Zn8, and partial Cu5Zn8 was transformed to Cu6Sn5 during aging treatment. The IMCs layer thickness was dominated by aging temperature, and ZrC facilitated the IMCs layer growth. The tensile strength of Sn–9Zn based solder joints was enhanced by adding ZrC particles, and then are decreased simultaneously with increasing aging temperature. The fracture surface of Sn–9Zn joints after aging was mainly composed of uniform dimples, and the fracture mechanism of Sn–9Zn based solder joints was ductile fracture.



This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51375294, 51505010, 51401037).


  1. 1.
    J.C. Liu, Z.H. Wang, J.Y. Xie, J.S. Ma, Q.Y. Shi, G. Zhang, K. Suganuma, Corros. Sci. 112, 150 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Liu, S.B. Xue, P. Xue, D.X. Luo, J. Mater. Sci.: Mater. Electron. 26, 4389 (2015)Google Scholar
  3. 3.
    T. Gancarz, P. Bobrowski, J. Pstruś, S. Pawlak, J. Alloys Compd. 679, 442 (2016)CrossRefGoogle Scholar
  4. 4.
    T. Gancarz, Metall. Mater. Trans. A 47, 1 (2016)Google Scholar
  5. 5.
    P. Xue, S.B. Xue, Y.F. Shen, F. Long, H. Zhu, J. Mater. Sci.: Mater. Electron. 25, 4219 (2014)Google Scholar
  6. 6.
    P. Xue, S.B. Xue, Y.F. Shen, H. Zhu, Mater. Des. 60, 1 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Ren, M.N. Collins, Mater. Des. 119, 133 (2017)CrossRefGoogle Scholar
  8. 8.
    M.M. Billah, K.M. Shorowordi, A. Sharif, J. Alloys Compd. 585, 32 (2014)CrossRefGoogle Scholar
  9. 9.
    C.Y. Liu, M.H. Hon, M.C. Wang, Y.R. Chen, K.M. Chang, W.L. Li, J. Alloys Compd. 582, 229 (2014)CrossRefGoogle Scholar
  10. 10.
    A.B. El Basaty, A.M. Deghady, E.A. Eid, Mater. Sci. Eng. A 701, 245 (2017)CrossRefGoogle Scholar
  11. 11.
    W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, M. Ding, Mater. Sci. Eng. A 678, 252 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Ding, W. Xing, X. Yu, L. Ma, W. Zuo, Z. Ji, J. Alloys Compd. 739, 481 (2018)CrossRefGoogle Scholar
  13. 13.
    M.L. Huang, F. Zhang, F. Yang, N. Zhao, J. Mater. Sci.: Mater. Electron. 26, 2278 (2015)Google Scholar
  14. 14.
    T. Gancarz, P. Bobrowski, S. Pawlak, N. Schell, R. Chulist, K. Janik, J. Electron. Mater. 47, 49 (2017)CrossRefGoogle Scholar
  15. 15.
    J.X. Jiang, J.E. Lee, K.S. Kim, J. Alloys Compd. 462, 244 (2008)CrossRefGoogle Scholar
  16. 16.
    K.S. Kim, T. Matsuura, K. Suganuma, J. Electron. Mater. 35, 41 (2006)CrossRefGoogle Scholar
  17. 17.
    G.Q. Wei, J. Mater. Sci.: Mater. Electron. 23, 130 (2012)Google Scholar
  18. 18.
    T. Gancarz, P. Fima, J. Pstruś, J.Mater. Eng. Perform. 23, 1524 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Luan, W. Guo, S. Yang, Z. Ma, J. He, J. Yan, J. Mater. Process. Technol. 248, 123 (2017)CrossRefGoogle Scholar
  20. 20.
    D.X. Luo, S.B. Xue, S. Liu, J. Mater. Sci.: Mater. Electron. 25, 5195 (2014)Google Scholar
  21. 21.
    L. Yang, J. Ge, Y. Zhang, J. Dai, Trans. Indian Inst. Met. 70, 2429 (2017)CrossRefGoogle Scholar
  22. 22.
    C.S. Lee, F.S. Shieu, J. Electron. Mater. 35, 1660 (2006)CrossRefGoogle Scholar
  23. 23.
    L. Yang, Y.C. Zhang, J. Dai, Y.F. Jing, J.G. Ge, N. Zhang, Mater. Des. 67, 209 (2015)CrossRefGoogle Scholar
  24. 24.
    C.L. Chuang, L.C. Tsao, J. Mater. Sci.: Mater. Electron. 29, 4096 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automatic EngineeringChangshu Institute of TechnologyJiangsuPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringChangzhou UniversityJiangsuPeople’s Republic of China
  3. 3.School of Mechanical EngineeringSuzhou UniversityJiangsuPeople’s Republic of China

Personalised recommendations