Ag implanted ZnO hierarchical nanoflowers for photoelectrochemical water-splitting applications

  • B. Jansi Rani
  • A. Anusiya
  • M. Praveenkumar
  • S. Ravichandran
  • Ramesh K. Guduru
  • G. Ravi
  • R. YuvakkumarEmail author


Pristine ZnO and Ag-implanted ZnO hierarchical nanoflowers have been successfully synthesized via facile hydrothermal route for photoelectrochemical (PEC) water-splitting applications. The wurtzite hexagonal structural properties have been confirmed by X-ray diffraction (XRD), Raman, and Fourier transform infrared spectra analyses. As Ag content increases, the intensity of cation-sensitive plane (002) also increases, which has been pronounced by XRD result. The optical properties before and after Ag implantation have been thoroughly studied by photoluminescence and Ultraviolet–Visible diffuse reflectance spectroscopy spectra. The optimum concentration of 10% Ag-implanted ZnO possessed the minimum optical band gap of 3 eV. The visible particle size reduction with the increase of Ag concentration and also urchin like typical microflower morphology of synthesized nanostructures has been revealed by scanning electron microscopic images. The typical PEC behavior with 75.14 µA/cm2 versus RHE has been observed in 10% Ag-implanted ZnO nanoflowers. Increase of Ag concentration enhances the electrocatalytic behavior of the photoanodes, which had been revealed in our study. Photostability over 3 h with 40% of retention has been reported in 10% Ag-implanted ZnO hierarchical nanoflower photoanodes. Hence, the optimum concentration of Ag implantation with ZnO could be adapted as an excellent photoanode for PEC water-splitting applications.



This work was supported by UGC Start-Up Research Grant No.F.30-326/2016 (BSR).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    S.S. Mao, X. Chen, Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 31, 619–636 (2007)CrossRefGoogle Scholar
  2. 2.
    D.A. Haralambopoulos, H. Polatidis, Renewable energy projects: structuring a multi-criteria group decision-making framework. Renew. Energy 28 (2003) 961–973CrossRefGoogle Scholar
  3. 3.
    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002)CrossRefGoogle Scholar
  4. 4.
    J.M. Song, C.J. Mao, H.L. Niu, Y. HuaShen, S.Y. Zhang, Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. Cryst. Eng. Commun. 12, 3875–3881 (2010)CrossRefGoogle Scholar
  5. 5.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H.J. Morkoc, A comprehensive review of ZnO materials and devices. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  6. 6.
    D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383–387 (2001)CrossRefGoogle Scholar
  7. 7.
    H. Ohota, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Current injection emission from a transparent p-n junction composed of p-SrCu2O2 /n-ZnO. Appl. Phys. Lett. 77, 475 (2000)CrossRefGoogle Scholar
  8. 8.
    S.Y. Lee, Y. Li, J.S. Lee, J.K. Lee, M. Nastasi, S.A. Crooker, Q.X. Jia, H.S. Kang, J.S. Kang, Effects of chemical composition on the optical properties of Zn1−x CdxO thin films. Appl. Phys. Lett. 85, 218 (2003)CrossRefGoogle Scholar
  9. 9.
    C. Klingshirn, The luminescence of ZnO under high one and two-quantum excitation. Phys. Status Solid B 71, 547–556 (1975)CrossRefGoogle Scholar
  10. 10.
    A. Ortiz, M. Garsia, C. Falcony, Photoluminescent properties of indium-doped zinc oxide films prepared by spray pyrolysis. Thin Solid Films 207, 175–179 (1992)CrossRefGoogle Scholar
  11. 11.
    A. Tsukazaki, T. Ohtomo, T. Onuma, M. Ohtani, T. Mahino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Hawasaki, Repeated temperature modulation epitaxy for ptype doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42–46 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Xia, J. Brault, B. Damilano, S. Chenot, P. Vennegues, M. Nemoz, M. Teisseire, M. Leroux, R. Obrecht, I.C. Robin, Blue light-emitting diodes grown on ZnO substrates. Appl. Phys. Express 6, 042101 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater 4, 455–459 (2005)CrossRefGoogle Scholar
  14. 14.
    A.A. Dakhel, M.E. Hilo, Ferromagnetic nanocrystallineGd-doped ZnO powder synthesized by coprecipitation. J. Appl. Phys. 107, 123905 (2010)CrossRefGoogle Scholar
  15. 15.
    R. Jansi Rani, G. Mageswari, V. Ravi, R. Ganesh, Yuvakkumar, Design fabrication and characterization of hematite (a-Fe2O3) nanostructures. JOM 69, 2508–2514 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Skanadan, Y.J. Chen, N. Glumac, B.H. Kear, Synthesis of oxide nanoparticles in low pressure flames. Nanostruct. Mater. 11, 149–153 (1999)CrossRefGoogle Scholar
  17. 17.
    T. Shinagawa, M. Izaki, H. Inui, K. Murase, Y. Awakura, Characterization of transparent ferromagnetic Fe:ZnOsemiconductor films chemically prepared from aqueous solutions. J. Electrochem. Soc. 152, 736–741 (2005)CrossRefGoogle Scholar
  18. 18.
    N.V. Nghia, T.N. Trung, N.N.K. Truong, D.M. Thuy, Preparation and characterization of silver doped ZnO nanostructures. Sci. Res 1, 18–22 (2012)Google Scholar
  19. 19.
    J. Fan, R.J. Freer, The rolls played by Ag and Al dopants in controlling the electrical properties of ZnOvaristors. Appl. Phys. 77, 4795 (1995)CrossRefGoogle Scholar
  20. 20.
    M. Oztas, M. Bedir, Thickness dependence of structural, electrical, optical properties of sprayed ZnO:Cu films. Thin Solid Films 516, 1703–1709 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Sankar Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawaa, Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nano ellipsoids at low temperature. Sensor Actuat B Chem S0925-4005, 31437–31445 (2017)Google Scholar
  22. 22.
    H.J. Jung, R. Koutavarapu, S. Leea, J.H. Kim, H.C. Choi, M.Y. Choi, Enhanced photocatalytic activity of Au-doped Au@ZnOcore-shell flower-like nanocomposites. J. Alloys Compd. 735, 2058–2066 (2018)CrossRefGoogle Scholar
  23. 23.
    R. Kumar, A. Umar, D. Singh Rana, P. Sharma, M. Singh Chauhan, S. Chauhan, Fe-doped ZnOnano ellipsoids for enhanced photocatalytic and highly sensitive and selective picric acid sensor. Mater. Res. Bull. 102, 282–288 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Boudjellal, A. Belhadi, R. Brahimi, S. Boumaza, M. Trari, Physical and photoelectrochemical properties of the ilmenite NiTiO3 prepared by wet chemical method and its application for O2 evolution under visible light. Mater. Sci. Semicond. Process. 75, 247–252 (2018)CrossRefGoogle Scholar
  25. 25.
    G.M. Lohar, S.T. Jadhav, B.P. Relekar, R.A. Patil, Y.R. Mac, V.J. Fulari, Electrochemically synthesized 1D and 3D hybrid Fe3+ doped ZnSe dandelions for photoelectrochemical cell application. Optik 158, 53–63 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Chaudhary, V.D. Singh, N. Vankar, Khare, ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J. Photochem. Photobiol. A 351, 154–161 (2018)CrossRefGoogle Scholar
  27. 27.
    Z. Yang, Y. Wang, D. Zhang, A novel signal-on photoelectrochemical sensing platform based on biosynthesis of CdS quantum dots sensitizing ZnO nanorod arrays. Sens. Actuators B 261, 515–521 (2018)CrossRefGoogle Scholar
  28. 28.
    R. Ballal, M. Shinde, Y. Waghadkar, S. Arbuj, S. Rane, R. Chauhan, Template-free hydrothermal synthesis of beaded nanochain bundles of ZnO and their application as photoanode in dye-sensitized solar cells. Appl. Phys. A 124, 203 (2018)CrossRefGoogle Scholar
  29. 29.
    N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan, I. Vetha Potheher, Synthesis of ZnOnanorods by one step microwave-assisted hydrothermal route for electronic device applications. J. Mater. Sci. 29, 2927–2938 (2018)Google Scholar
  30. 30.
    G. Lingxia, S. Yuchen, L. Xiangfei, H. Zhitao, Z. Zhenjie, C. Yong, X. Wenhui, L. Xin, Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosens. Bioelectron. 99, 368–374 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Ag/ZnOheterostructurenanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 46, 6980–6986 (2007)CrossRefGoogle Scholar
  32. 32.
    P.K. Stoimenov, R.L. Klinger, G.L. Marchin, Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686 (2002)CrossRefGoogle Scholar
  33. 33.
    S.I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, D.O. Shah, Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Ind. Eng. Chem. Res. 53, 5749–5758 (2014)CrossRefGoogle Scholar
  34. 34.
    R.T. Sapkal, S.S. Shinde, A.R. Babar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Structural, morphological, optical and photoluminescence properties of Ag-doped zinc oxide thin films. Mater. Exp. 64, 2158–5849 (2012)Google Scholar
  35. 35.
    G. Singh, S.B. Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique. Bull. Mater. Sci. 33, 581–587 (2010)CrossRefGoogle Scholar
  36. 36.
    B. Singh, J. Singh, R. Kaur, R.K. Moudgila, S.K. Tripathi, Quantitative measurement of transport properties: Ag-doped nanocrystalline CdS thin films. RSC Adv. 7, 53951 (2017)CrossRefGoogle Scholar
  37. 37.
    R. Sanchez Zeferino, M. Barboza Flores, U. Pal, Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J. Appl. Sci. 109, 014308 (2011)Google Scholar
  38. 38.
    R.D. Yang, S. Tripathy, Y. Li, H.J. Sue, Photoluminescence and micro-Raman scattering in ZnO nanoparticles: the influence of acetate adsorption. Chem. Phys. Lett. 411, 150–154 (2005)CrossRefGoogle Scholar
  39. 39.
    L. Zhang, T. Fujita, F. Chen, D.L. Feng, S. Maekawa, M.W. Chen, Doping and temperature dependence of Raman scattering from NdFeAsO1−xFx (x = 0-0.2) superconductor. Phys. Rev. B 79, 052507 (2009)CrossRefGoogle Scholar
  40. 40.
    Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, J. Zhang, Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals. J. Appl. Phys. 109, 053521 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Photoluminescence signature of resonant energy transfer in ZnO coated Si nanocrystals decorated on vertical Si nanowires array. J. Alloy. Compd. 638, 419–428 (2015)CrossRefGoogle Scholar
  42. 42.
    J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, Relationship between oxygen defects and the photocatalytic property of ZnOnanocrystals in Nafion membranes. Langmuir 25, 1218–1223 (2009)CrossRefGoogle Scholar
  43. 43.
    Y. Ortega, P. Fernandez, J. Piqueras, Growth and luminescence of oriented nanoplate arrays in tin doped ZnO. Nanotechnology 18, 115606 (2007)CrossRefGoogle Scholar
  44. 44.
    B. Jansi Rani, M. Durga, G. Ravi, P. Krishnaveni, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Temperature-dependent physicochemical properties of magnesium ferrites (MgFe2O4). Appl. Phys. A 124, 319 (2018)CrossRefGoogle Scholar
  45. 45.
    S. Suwanboon, Structural and optical properties of nanocrystallineZnO powder from sol-gel method. Sci. Asia 34, 31–34 (2008)CrossRefGoogle Scholar
  46. 46.
    S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, Structural, dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites. J. Sol-Gel. Sci. Technol. 83, 394–404 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Gayathri, O.S. NirmalGhosh, S. Sathishkumar, P. Sudhakara, J. Jayaramudu, S.S. Ray, A.K. Viswanath, Investigation of physicochemical properties of Ag doped ZnO nanoparticles prepared by chemical route. Appl. Sci. Lett. 1, 8–13 (2015)Google Scholar
  48. 48.
    G. Murtaza, R. Ahmad, M. Rashid, M. Hassan, A. Hussnain, M.A. Khan, M. Ehsan ul Haq, M. Shafique, S. Riaz, Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr. Appl. Phys. 14, 176–181 (2014)CrossRefGoogle Scholar
  49. 49.
    R. Yousefi, F. Jamali-Sheini, A. Khorsand Zak, A comparative study ofthe properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up. Cond. Chem. Vapor. Depos. 18, 215–220 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini, N.Ming Huang, Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram. Int. 40, 7957–7963 (2014)CrossRefGoogle Scholar
  51. 51.
    X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang, J. Jiang, Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. J. Nanomater. 2014, 6 (2014)Google Scholar
  52. 52.
    A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, A study on Cu and Ag doped ZnO nanoparticles for the photocatalytic degradation of brilliant green dye: synthesis and characterization. Water Sci. Technol. 74, 1426–1435 (2016)CrossRefGoogle Scholar
  53. 53.
    J.C. Li, Q. Cao, X.Y. Hou, Effects of Ag-induced acceptor defects on the band gap tuning and conductivity of Li:ZnO films. J. Appl. Phys. 113, 203518 (2013)CrossRefGoogle Scholar
  54. 54.
    H.M. Chen, C.K. Chen, R.S. Liu, C.C. Wu, W.S. Chang, K.H. Chen, T.S. Chan, J.F. Lee, D.P. Tsai, A new approach to solar hydrogen production: a ZnO-ZnS solid solution nanowire array photoanode. Adv. Energy Mater. 1, 742–747 (2011)CrossRefGoogle Scholar
  55. 55.
    C.K. Chen, Y.-P. .Shen, H.M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee, R.-S. Liu, Quantum-dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting. Eur. J. Inorg. Chem. 2014, 773–779 (2014)CrossRefGoogle Scholar
  56. 56.
    B. Jansi Rani, P.R. Shilpa, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Controlled synthesis and electrochemical properties of Ag-doped Co3O4 nanorods. Int. J. Hydrog. Energy 42, 29666–29671 (2017)CrossRefGoogle Scholar
  57. 57.
    S. Huang, Z. Wen, X. Zhu, Z. Gu, Preparation and electrochemical performance of Ag doped Li4Ti5O12. Electrochem. Commun. 6, 1093–1097 (2004)CrossRefGoogle Scholar
  58. 58.
    B. Jansi Rani, G. Ravi, S. Ravichandran, V. Ganesh, F. Ameen, A. Al Sabri, R. Yuvakkumar, Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications, Appl. Nano Sci. (2018). Google Scholar
  59. 59.
    T. Wanga, Z. Yanga, J. Huanga, R. Wanga, Z. Zhao, The electrochemical performances of La2O3-doped ZnO in Ni–Zn secondary batteries. Electrochim. Acta 112, 104–110 (2013)CrossRefGoogle Scholar
  60. 60.
    S. Ho-Kimura, S.J.A. Moniz, A.D. Handoko, J. Tang, Enhanced photoelectrochemical water splitting by nanostructured BiVo4-TiO2 composite electrodes. J. Mater. Chem. A 2, 3948 (2014)CrossRefGoogle Scholar
  61. 61.
    N. Wang, M. Liu, H. Tan, J. Liang, Q. Zhang, C. Wei, Y. Zhao, E.H. Sargent, X. Zhang, Compound homojunction:heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting. Small 13, 160352 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. Jansi Rani
    • 1
  • A. Anusiya
    • 1
  • M. Praveenkumar
    • 2
  • S. Ravichandran
    • 2
  • Ramesh K. Guduru
    • 3
  • G. Ravi
    • 1
  • R. Yuvakkumar
    • 1
    Email author
  1. 1.Nanomaterials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electro Inorganic DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  3. 3.Department of Mechanical EngineeringLamar UniversityBeaumontUSA

Personalised recommendations