Effects of Al2O3 buffer layer and annealing on the structural and optoelectronic properties of AZO films

  • Chuanjin Lin
  • Xiuyan Li
  • Chunyao Xu


Transparent conductive aluminum-doped ZnO (AZO) films are deposited on glass substrates using radio frequency (rf) magnetron sputtering, with an AZO ceramic target (Al2O3 content is ~ 3 wt%). Before the AZO films is coated, the hydrophilicity of the surface of the glass substrate is increased by oxygen plasma etching. The grey Taguchi method is used to determine the effect of the deposition parameters on the structural and optoelectronic properties of AZO films. In the confirmation runs, using the grey Taguchi method, an improvement of 46.3% in electrical resistivity and of 1.74% in transmittance is observed. The effect of an Al2O3 buffer layer is also determined. When the thickness of the Al2O3 buffer is increased (from 50 nm to 150 nm), the intensity of the (0 0 2) peak for the AZO films increases and the peaks become sharper, the resistivity of the AZO films is decreased and the transmittance is slightly reduced. Annealing at 500 °C in a vacuum (2.0 Pa) for a period of 30 min, increases the performance of the AZO/Al2O3/glass to better than that for AZO/glass samples. Using a Rockwell-C hardness tester, the AZO/Al2O3 (50 nm)/glass film are classified as HF1, which represents good adhesive mechanical strength. The crystallinity of AZO/Al2O3 (50 nm)/glass samples that are annealed at 500 °C for 30 min is improved, the electrical resistivity is 9.70 × 10−4 Ω cm and the optical transmittance in the visible region is approximately 85%. The figure of merit shows that the bi-layer films have better optoelectronic performance.



The research work was supported by the Natural Science Foundation of Fujian Province in China (2017-J01772). Educational research projects for young and middle-aged teachers in Fujian (JT180302).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.


  1. 1.
    G. Kaur, A. Mitra, K.L. Yadav, Prog. Nat. Sci. 25, 12 (2015)CrossRefGoogle Scholar
  2. 2.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, J. Alloy. Compd. 721, 45 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Ebrahimifard, M.R. Golobostanfard, H. Abdizadeh, Appl. Surf. Sci. 290, 252 (2014)CrossRefGoogle Scholar
  4. 4.
    D.K. Kim, H.B. Kim, J. Alloy. Compd. 709, 627 (2017)CrossRefGoogle Scholar
  5. 5.
    C.H. Tseng, C.H. Huang, H.C. Chang, D.Y. Chen, C.P. Chou, C.Y. Hsu, Thin Solid Films 519, 7959–7965 (2011)CrossRefGoogle Scholar
  6. 6.
    W.J. Yang, C.C. Tsao, C.Y. Hsu, H.C. Chang, C.P. Chou, J.Y. Kao, J. Am. Ceram. Soc. 95, 2140 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Misra, V. Ganeshan, N. Agrawal, J. Alloy. Compd. 725, 60 (2017)CrossRefGoogle Scholar
  8. 8.
    C.C. Chen, C.C. Tsao, Y.C. Lin, C.Y. Hsu, Ceram. Int. 36, 979 (2010)CrossRefGoogle Scholar
  9. 9.
    D.M. Nelabhotla, T.V. Jayaraman, K. Asghar, D. Das, Mater. Des. 104, 392 (2016)CrossRefGoogle Scholar
  10. 10.
    J.Y. Kao, C.C. Tsao, M. Jou, W.S. Li, C.Y. Hsu, J. Comput. Electron. 11, 421 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Drabik, M. Truchly, V. Ballo, T. Roch, L. Kvetkova, P. Kus, Surf. Coat. Technol. 333, 138 (2018)CrossRefGoogle Scholar
  12. 12.
    C.Y. Tsay, K.C. Pai, Thin Solid Films 654, 11 (2018)CrossRefGoogle Scholar
  13. 13.
    D.C. Tsai, Z.C. Chang, B.H. Kuo, Y.H. Wang, E.C. Chen, F.S. Shieu, J. Alloy. Compd. 743, 603 (2018)CrossRefGoogle Scholar
  14. 14.
    C.W. Gorrie, A.K. Sigdel, J.J. Berry, B.J. Reese, M.F.A.M. van Hest, P.H. Holloway, D.S. Ginley, J.D. Perkins, Thin Solid Films 519, 190 (2010)CrossRefGoogle Scholar
  15. 15.
    V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R. Martins, Thin Solid Films 442, 102 (2003)CrossRefGoogle Scholar
  16. 16.
    J.L. Deng, The Essential Method of Grey Systems (HUST Press, Wuhan, 1992)Google Scholar
  17. 17.
    N. Kumari, J.V. Gohel, S.R. Patel, Optik 144, 422 (2017)CrossRefGoogle Scholar
  18. 18.
    C.H. Tseng, W.H. Wang, H.C. Chang, C.P. Chou, C.Y. Hsu, Vacuum 85, 263 (2010)CrossRefGoogle Scholar
  19. 19.
    Z.B. Ayadi, L.E. Mir, K. Djessas, S. Alaya, Thin Solid Films 517, 6305 (2009)CrossRefGoogle Scholar
  20. 20.
    D.K. Kim, H.B. Kim, J. Alloy. Compd. 509, 421 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Lv, X. Xiu, Z. Pang, Y. Dai, S. Han, Appl. Surf. Sci. 252, 5687 (2006)CrossRefGoogle Scholar
  22. 22.
    C.K. Lin, C.H. Hsu, Y.H. Cheng, K.L. Ou, S.L. Lee, Appl. Surf. Sci. 324, 13 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Yang, G. Xian, H. Zhao, H. Fan, J. Wang, H. Wang, H. Du, Int. J. Refract. Met. Hard Mat. 52, 29 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, X.M. Wu, L.J. Zhuge, Vacuum 89, 127 (2013)CrossRefGoogle Scholar
  25. 25.
    C.R. Kim, J.Y. Lee, J.H. Heo, C.M. Shin, T.M. Lee, J.H. Park, H. Ryu, J.H. Chang, C.S. Son, Curr. Appl. Phys. 10, S298 (2010)CrossRefGoogle Scholar
  26. 26.
    L.H. Quang, S.J. Chua, K.P. Loh, E. Fitzgerald, J. Cryst. Growth 287, 157 (2006)CrossRefGoogle Scholar
  27. 27.
    Y.H. Song, T.Y. Eom, S.B. Heo, J.Y. Cheon, B.C. Cha, D. Kim, Mater. Lett. 205, 122 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringMinnan Normal UniversityZhangzhouChina

Personalised recommendations