In situ fluorine doped ZrO2−x nanotubes for efficient visible light photocatalytic activity

  • Qingling Chen
  • Wulin YangEmail author
  • Jiajun Zhu
  • Licai Fu
  • Deyi Li
  • Lingping ZhouEmail author


The F-doped ZrO2−x nanotubes are synthesized by anodic oxidization in a F-containing electrolyte and following a low temperature annealing process. The F-doped ZrO2−x nanotubes exhibit a dramatic increase in visible light absorption and efficient visible light photocatalytic activity which are not possessed to normalized ZrO2. The fluorine in anodic ZrO2 nanotubes plays a vital role in the formation of abundant anion vacancies during the annealing. Combining the doping effect of the residual fluorine element, the band gap of the F-doped ZrO2−x nanotubes reduced from 5.13 to 2.35 eV. Moreover, the transient photocurrent response plots and the photocatalytic experiments reveal the highly effective electrons–holes separation of the F-doped ZrO2−x nanotubes and enhanced visible-light photocatalytic degradation for RhB. The degradation rate of RhB in the presence of the F-doped ZrO2−x nanotubes catalyst has reached up to 83% under 2 h low-power LED light irradiation. In addition, the possible photocatalytic mechanism of the F-doped ZrO2−x nanotubes has been proposed via studying the band structure. It is believed that the F-doped ZrO2−x nanotubes will have a bright future for sustainable energy sources and cleaning environment.



This study was funded by the Fundamental Research Funds for the Central Universities, China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A.L. Kustov, S.B. Rasmussen, R. Fehrmann, P. Simonsen, Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for No abatement in alkali containing flue gases. Appl. Catal. B 76, 9–14 (2007)CrossRefGoogle Scholar
  2. 2.
    C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram. Int. 44, 6940–6948 (2018)CrossRefGoogle Scholar
  3. 3.
    J.L. Zhao, X.X. Wang, L.B. Zhang, X.R. Hou, Y. Li, C.C. Tang, Degradation of methyl orange through synergistic effect of zirconia nanotubes and ultrasonic wave. J. Hazard. Mater. 188, 231–234 (2011)CrossRefGoogle Scholar
  4. 4.
    W.Y. Hu, W. Zhou, K.F. Zhang, X.C. Zhang, L. Wang, B.J. Jiang, G.H. Tian, D.Y. Zhao, H.G. Fu, Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. A 4, 7495–7502 (2016)CrossRefGoogle Scholar
  5. 5.
    O. Elbanna, P. Zhang, M. Fujitsuka, T. Majima, Facile preparation of nitrogen and fluorine codoped TiO2 mesocrystal with visible light photocatalytic activity. Appl. Catal. B 192, 80–87 (2016)CrossRefGoogle Scholar
  6. 6.
    T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R.A. Varin, F. Gu, Photocatalytic activity of hydrogenated TiO2. ACS Appl. Mater. Interfaces 5, 1892–1895 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of Zno. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)CrossRefGoogle Scholar
  8. 8.
    X. An, C. Hu, H. Liu, J. Qu, Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. J. Mater. Chem. A 5, 24989–24994 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye (2017) Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 29, 1701774CrossRefGoogle Scholar
  10. 10.
    S. Kouva, K. Honkala, L. Lefferts, J. Kanervo, Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal. Sci. Technol. 5, 3473–3490 (2015)CrossRefGoogle Scholar
  11. 11.
    O.A. Syzgantseva, M. Calatayud, C. Minot, Revealing the surface reactivity of zirconia by periodic DFT calculations. J. Phys. Chem. C 116, 6636–6644 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Sinhamahapatra, J.-P. Jeon, J. Kang, B. Han, J.-S. Yu, Oxygen-deficient zirconia (ZrO2–x): a new material for solar light absorption. Sci. Rep. 6, 27218 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Gurushantha, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, C. Shivakumara, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anilkumar, Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: structural, photocatalytic and photoluminescent properties. J. Mol. Catal. A 397, 36–47 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Renuka, K.S. Anantharaju, S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, H. Nagabhushana, Y.S. Vidya, Hollow microspheres Mg-doped ZrO2 nanoparticles: green assisted synthesis and applications in photocatalysis and photoluminescence. J. Alloy. Compd. 672, 609–622 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Gionco, M.C. Paganini, E. Giamello, O. Sacco, V. Vaiano, D. Sannino, Rare earth oxides in zirconium dioxide: how to turn a wide band gap metal oxide into a visible light active photocatalyst. J. Energy Chem. 26, 270–276 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Gionco, M.C. Paganini, M. Chiesa, S. Maurelli, S. Livraghi, E. Giamello (2015) Cerium doped zirconium dioxide as a potential new photocatalytic material. The role of the preparation method on the properties of the material. Appl. Catal. A 504, 338–343CrossRefGoogle Scholar
  17. 17.
    S.M. El-Dafrawy, M. Farag, S.M. Hassan, Photodegradation of organic compounds using chromium oxide-doped nano-sulfated zirconia. Res. Chem. Intermed. 43, 6343–6365 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Sudrajat, S. Babel, Comparison and mechanism of photocatalytic activities of N-Zno and N-ZrO2 for the degradation of rhodamine 6G. Environ. Sci. Pollut. Res. 23, 10177–10188 (2016)CrossRefGoogle Scholar
  19. 19.
    E. Bailon-Garcia, A. Elmouwahidi, F. Carrasco-Marin, A.F. Perez-Cadenas, F.J. Maldonado-Hodar, Development of carbon-ZrO2 composites with high performance as visible-light photocatalysts. Appl. Catal. B 217, 540–550 (2017)CrossRefGoogle Scholar
  20. 20.
    E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, A.K. Mishra, Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine. J. Rare Earths 33, 498–506 (2015)CrossRefGoogle Scholar
  21. 21.
    M.V. Dozzi, A. Zuliani, I. Grigioni, G.L. Chiarello, L. Meda, E. Selli, Photocatalytic activity of one step flame-made fluorine doped TiO2. Appl. Catal. A 521, 220–226 (2016)CrossRefGoogle Scholar
  22. 22.
    M.A. Lara, M.J. Sayagues, J.A. Navio, M.C. Hidalgo, A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure. J. Mater. Sci. 53, 435–446 (2018)CrossRefGoogle Scholar
  23. 23.
    A.W. Amer, M.A. El-Sayed, N.K. Allam, Tuning the photoactivity of zirconia nanotubes-based photoanodes via ultrathin layers of ZrN: an effective approach toward visible-light water splitting. J. Phys. Chem. C 120, 7025–7032 (2016)CrossRefGoogle Scholar
  24. 24.
    W. Jiang, J. He, J. Zhong, J. Lu, S. Yuan, B. Liang, Preparation and photocatalytic performance of ZrO2 nanotubes fabricated with anodization process. Appl. Surf. Sci. 307, 407–413 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Lv, B. Cheng, J. Yu, G. Liu, Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 14, 5349–5362 (2016)CrossRefGoogle Scholar
  26. 26.
    T. Tanuma, H. Okamoto, K. Ohnishi, S. Morikawa, T. Suzuki, Activated zirconium oxide catalysts to synthesize dichloropentafluoropropane by the reaction of dichlorofluoromethane with tetrafluoroethylene. Appl. Catal. A 359, 158–164 (2009)CrossRefGoogle Scholar
  27. 27.
    A.P. Gaikwad, C.A. Betty, D. Tyagi, R. Rao, A.K. Tripathi, R. Sasikala, In situ formation of surface sulfide species and its role in enhancing the photocatalytic and photoelectrochemical properties of wide bandgap ZrO2. Mol. Catal. 435, 128–134 (2017)CrossRefGoogle Scholar
  28. 28.
    S.D. Wolter, J.R. Piascik, B.R. Stoner, Characterization of plasma fluorinated zirconia for dental applications by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 257, 10177–10182 (2011)CrossRefGoogle Scholar
  29. 29.
    Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766–5774 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Dankeaw, G. Poungchan, M. Panapoy, B. Ksapabutr, In-situ one-step method for fabricating three-dimensional grass-like carbon-doped ZrO2 films for room temperature alcohol and acetone sensors. Sens. Actuators B 242, 202–214 (2017)CrossRefGoogle Scholar
  31. 31.
    Z. Pu, Y. Liu, H. Zhou, W. Huang, Y. Zheng, X. Li, Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts. Appl. Surf. Sci. 422, 85–93 (2017)CrossRefGoogle Scholar
  32. 32.
    J.H. Park, J.Y. Oh, S.W. Han, T.I. Lee, H.K. Baik, Low-temperature, solution-processed ZrO2:B thin film: a bifunctional inorganic/organic interfacial glue for flexible thin-film transistors. ACS Appl. Mater. Interfaces 7, 4494–4503 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Liu, X. Wu, W. Liu, W. Chen, R. Ran, M. Li, D. Weng, Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J. Catal. 337, 188–198 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Wang, K. Marcus, X. Huang, Z. Shen, Y. Yang, Y. Bi (2018) Dual effects of nanostructuring and oxygen vacancy on photoelectrochemical water oxidation activity of superstructured and defective hematite nanorods. Small 14, 1704464CrossRefGoogle Scholar
  35. 35.
    F. Chen et al., Novel ternary heterojunction photocatalyst of Ag nanoparticles and g-C3N4 nanosheets Co-modified Bivo4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B 205, 133–147 (2017)CrossRefGoogle Scholar
  36. 36.
    X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)CrossRefGoogle Scholar
  37. 37.
    L. Shi, Z. Li, T.D. Dao, T. Nagao, Y. Yang, A synergistic interaction between isolated Au nanoparticles and oxygen vacancies in an amorphous black TiO2 nanoporous film: toward enhanced photoelectrochemical water splitting. J. Mater. Chem. A 6, 12978–12984 (2018)CrossRefGoogle Scholar
  38. 38.
    Y. Jiaguo, W. Wenguang, C. Bei, S. Bao-Lian, Enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 113, 6743–6750 (2009)CrossRefGoogle Scholar
  39. 39.
    J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)CrossRefGoogle Scholar
  40. 40.
    S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10, 73 (2015)CrossRefGoogle Scholar
  41. 41.
    N.A. Lange, J.A. Dean, Lange’s Handbook of Chemistry, (McGraw-Hill, New York, 1999), p 1.171Google Scholar
  42. 42.
    M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007)CrossRefGoogle Scholar
  43. 43.
    A.K. Kulkarni, C.S. Praveen, Y.A. Sethi, R.P. Panmand, S.S. Arbuj, S.D. Naik, A.V. Ghule, B.B. Kale, Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 46, 14859–14868 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Liu, H. Xu, Y. Xu, Y. Song, J. Lian, Y. Zhao, L. Wang, L. Huang, H. Ji, H. Li, Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Appl. Catal. B 207, 429–437 (2017)CrossRefGoogle Scholar
  45. 45.
    J.-J. Li, B. Weng, S.-C. Cai, J. Chen, H.-P. Jia, Y.-J. Xu, Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. J. Hazard. Mater. 342, 661–669 (2018)CrossRefGoogle Scholar
  46. 46.
    G. Huang, R. Shi, Y. Zhu, Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. J. Mol. Catal. A 348, 100–105 (2011)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, Y. Wu, Y. Huang, Z. Zhou, S. Shen, Reduction of oxygen vacancy and enhanced efficiency of perovskite solar cell by doping fluorine into TiO2. J. Alloy. Compd. 681, 191–196 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Du, B. Qiu, Q. Zhu, M. Xing, J. Zhang (2018) Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catal. Today. Google Scholar
  49. 49.
    A. Al-Keisy, L. Ren, T. Zheng, X. Xu, M. Higgins, W. Hao, Y. Du, Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi4(SiO4)3/Bi2SiO5 nanostructures. Dalton Trans. 46, 15582–15588 (2017)CrossRefGoogle Scholar
  50. 50.
    J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao, R. Chen, Z-scheme BiO1-XBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl. Catal. B 205, 281–291 (2017)CrossRefGoogle Scholar
  51. 51.
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)CrossRefGoogle Scholar
  52. 52.
    X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016)CrossRefGoogle Scholar
  53. 53.
    Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-Like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation. Appl. Surf. Sci. 289, 394–399 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaChina
  2. 2.Hunan Province Key Laboratory for Spray Deposition Technology and ApplicationHunan UniversityChangshaChina

Personalised recommendations