Advertisement

Good thermal stability and low dielectric loss of (K0.47Na0.47Li0.06)NbO3–(Bi0.5Na0.5)(Li0.25Ta0.75)O3 ceramics in a wide temperature range

  • Jie Sun
  • Xiuli ChenEmail author
  • Xu Li
  • Xiao Yan
  • Xiaoxia Li
  • Huanfu Zhou
  • Xiaobin Liu
  • Hong Ruan
Article
  • 32 Downloads

Abstract

(K0.47Na0.47Li0.06)NbO3–(Bi0.5Na0.5)(Li0.25Ta0.75)O3 [(1−x)KNLN–xBNLT, 0 ≤ x ≤ 0.02] ceramics were prepared via a traditional solid phase method. The phase structure of (1−x)KNLN–xBNLT ceramics was studied by X-ray diffraction and Raman spectroscopy. The relative permittivity of KNLN ceramics could be improved with adding BNLT. When x = 0.01, the ceramic exhibited large relative permittivity and good thermal stability from 70 to 375 °C (Δε/ε70°C ≤ ± 12%), indicating that this material could be applied in capacitors with wider working-temperature range. As x = 0.005, the ceramics exhibited high piezoelectric constant of 180 pC N−1 and good piezoelectric stability under 400 °C. The conductivity behavior of (1−x)KNLN–xBNLT ceramics at high temperature was also investigated, showing that the relaxation processes and mechanisms of conduction were thermal activation attributed by the double-ionized oxygen vacancy.

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant Nos. 11664008 and 61761015), Natural Science Foundation of Guangxi (Grant Nos. 2017GXNSFDA198027 and 2017GXNSFFA198011).

References

  1. 1.
    J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, J. Li, J. Zhu, Scr. Mater. 59, 750–752 (2008)CrossRefGoogle Scholar
  2. 2.
    K. Wang, J.-F. Li, Adv. Funct. Mater. 20, 1924–1929 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, J. Zhu, Z. Pu, Q. Li, J. Phys. D 41, 125405 (2008)CrossRefGoogle Scholar
  4. 4.
    X. Chen, X. Yan, X. Li, G. Liu, J. Sun, X. Li, H. Zhou, J. Mater. Sci. Mater. Electron. 29, 11199–11207 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Chen, G. Liu, G. Huang, X. Li, X. Yan, H. Zhou, J. Mater. Sci. Mater. Electron. 28, 13126–13131 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Khesro, D. Wang, F. Hussain, D.C. Sinclair, A. Feteira, I.M. Reaney, Appl. Phys. Lett. 109, 142907 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35, 2501–2512 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Nature 432, 81–84 (2004)CrossRefGoogle Scholar
  9. 9.
    T. Bongkarn, S. Chootin, S. Pinitsoontorn, S. Maensiri, J. Alloys Compd. 682, 14–21 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, J. Am. Ceram. Soc. 100, 627–637 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Klein, E. Hollenstein, D. Damjanovic, H.J. Trodahl, N. Setter, M. Kuball, J. Appl. Phys. 102, 014112 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Lin, K.W. Kwok, Int. J. App. Ceram. Technol. 8, 684–690 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Hao, Z. Xu, R. Chu, W. Li, J. Du, J. Mater. Sci. Mater. Electron. 26, 7867–7872 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Bomlai, N. Muensit, S.J. Milne, Ceram. Int. 39, S135–S138 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Wang, L.H. Luo, Y.P. Huang, W.P. Li, J. Am. Ceram. Soc. 99, 1625–1630 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Ray, N. Sinha, S. Bhandari, B. Kumar, Scr. Mater. 99, 77–80 (2015)CrossRefGoogle Scholar
  17. 17.
    L.-Q. Cheng, K. Wang, F.-Z. Yao, F. Zhu, J.-F. Li, S. Zhang, J. Am. Ceram. Soc. 96, 2693–2695 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, J. Eur. Ceram. Soc. 37, 1857–1860 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064–7067 (2005)CrossRefGoogle Scholar
  20. 20.
    H. Xing, J. Zhang, X. Jia, H. Pan, J. He, J. Wang, W. Bai, F. Wen, Ceram. Int. 44, 10006–10009 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloys Compd. 750, 507–514 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Chen, X. Yan, G. Liu, X. Li, G. Huang, H. Zhou, J. Electron. Mater. 47, 794–799 (2017)CrossRefGoogle Scholar
  23. 23.
    E.M. Alkoy And, A. Berksoy-Yavuz, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 2121–2128 (2012)CrossRefGoogle Scholar
  24. 24.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, Adv. Funct. Mater. 104, 294–299 (2013)Google Scholar
  25. 25.
    K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, J. Alloys Compd. 453, 325–331 (2008)CrossRefGoogle Scholar
  26. 26.
    X. Yan, X. Chen, X. Li, G. Liu, H. Zhang, H. Zhou, J. Mater. Sci. Mater. Electron. 29, 4538–4546 (2017)CrossRefGoogle Scholar
  27. 27.
    X. Sun, J. Deng, L. Liu, S. Liu, D. Shi, L. Fang, B. Elouadi, Mater. Res. Bull. 73, 437–445 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, X. Chen, H. Zhou, L. Fang, L. Liu, H. Zhang, J. Mater. Sci. Mater. Electron. 24, 770–775 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Physica B 407, 136–139 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jie Sun
    • 1
  • Xiuli Chen
    • 1
    Email author
  • Xu Li
    • 1
  • Xiao Yan
    • 1
  • Xiaoxia Li
    • 1
  • Huanfu Zhou
    • 1
  • Xiaobin Liu
    • 1
  • Hong Ruan
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations