Synthesis, physical and semiconducting properties of SnS2 prepared by chemical route

  • S. Kabouche
  • Y. Louafi
  • J.-F. Bardeau
  • M. TrariEmail author


The present study focused on the physical and electrochemical properties of stannic sulfide SnS2 synthesized by a template-free chemical route using thiourea as a precursor. SnS2 powder was characterized by X-ray diffraction (XRD), diffuse reflectance and Raman. The XRD pattern confirmed the formation of the hexagonal phaseSnS2 (SG: P-3m1) with the lattice parameters a = 3.639 Å, c = 5.868 Å and a mean crystallite size of ~ 60 nm. The optical measurements gave a direct transition of 2.26 eV, further transition indirectly allowed was observed at 1.63 eV. The Mott-Schottky plot recorded in Na2SO4 (0.1 M) electrolyte exhibits a linear behavior, characteristic of n-type conductivity and confirmed by chronoamperometry. The flat band potential (−0.63 VSCE) is close to the photocurrent onset potential (Eon= −0.64 VSCE) and a donor density of 3.54 × 1016 cm−3 was determined. The electrochemical impedance spectroscopy measured in the range (10−2 − 5 × 104 Hz) showed two semicircles assigned to a faradic charge transfer (Rct = 2.46 kΩ cm2) and grain boundaries contribution (Rgb= 13.69 kΩ cm2). The conduction band, located at −4.02 eV below vacuum, is made up of Sn4+: 5p while the valence band (−6.28 eV) derives mainly from S2−: 3p. As an application, Rhodamine B was successfully oxidized by photocatalysis on SnS2, 93.67% of the initial concentration (10 mg L−1) disappeared after 3 h of exposure to solar light (90 mW cm−2).



This work was supported by the Faculty of Chemistry (U.S.T.H.B., Algiers) with the collaboration of the institute of Molecules & Materials of Le Mans, CNRS, University of Maine, France. The authors would like to thank Pr. A. Azaze for the XRD patterns and Dr. S. Kaizra for his help.


  1. 1.
    G. Kiruthigaa, C. Manoharan, C. Raju, S. Dhanapandian, V. Thanikachalam, Mater. Sci. Semicond. Process. 26, 533–539 (2014)CrossRefGoogle Scholar
  2. 2.
    N.G. Deshpande, A.A. Sagade, Y.G. Gudage, C.D. Lokhande, R. Sharma, J. Alloys Compd. 436, 421–426 (2007)CrossRefGoogle Scholar
  3. 3.
    A.S. Alqarni, O. A. Yassin, Mater. Sci. Semicond. Process. 42, 390–396 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Deng, Z. Zhu, L. Liu, H. Liu, Solid State Sci. 63, 76–83 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Messaoudia, M.S. Aida, N. Attaf, T. Bezzi, J. Bougdira, G. Medjahdi, Mater. Sci. Semicond. Process. 17, 38–42 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Y. Zhang, D. Wu, D. Fan, X. Pang, Y. Zhang, H. Ma, X. Sun, Q. Wei, Biosens. Bioelectron. 86, 301–307 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H.X. Hu, Q. Xu. Biosens. Bioelectron. 26, 4337–4341 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, G. Qiu, D. Kong, B. Hu, Y. Li, J. Su, C. Xia, Superlattices Microstruct. 111, 480–486 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Wu, L. Zhou, S. Yan, H. Song, Y. Shi, Opt. Commun. 406, 239–243 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Beshkar, S. Zinatloo-Ajabshir, S. Bagheri, M. S. Niasari, PLoS ONE 12(6), e0158549 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Int. J. Hydrogen Energy 42(22), 1–11 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mol. Liq. (2017).
  13. 13.
    F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mol. Liq. 222, 435–440 (2016)CrossRefGoogle Scholar
  14. 14.
    A.S. Alqarni, B.O. Alsobhi, A.A. Elabbar, O. A. Yassin, Mater. Sci. Semicond. Process. 59, 18–22 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Guan, J. Li, X. Gao, Y. Xie, C. Yuan, J. Alloys Compd. 658, 190–197 (2016)CrossRefGoogle Scholar
  16. 16.
    I.B. Kherkhachi, A. Attaf, H. Saidi, A. bouhdjar, H. Bendjdidi, Y. Benkhetta, R. Azizi, M. S. Aida, J. Light Electron. Opt. 127, 2266–2270 (2016)CrossRefGoogle Scholar
  17. 17.
    P.C. Huang, H.I. Wang, S. Brahma, S.C. Wang, J.L. Huang, J. Cryst. Growth 468, 162–168 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Li, S. Yan, Z. Lin, X. Dai, P. Qu, Synth. Met. 217, 138–143 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, J. Chen, CrystEngComm 14, 1364–1375 (2012)CrossRefGoogle Scholar
  20. 20.
    S.K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, S. Chaudhuri, Mater. Res. Bull. 42, 576–583 (2007)CrossRefGoogle Scholar
  21. 21.
    L. Chen, M. Chen, D. Jiang, J. Xie, J. Mol. Catal. A 425, 174–182 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Zhang, X. Du, Y. Wang, H. Wang, W. Wang, Z. Fu, Mater. Sci. Semicond. Process. 64, 77–84 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, Y. Liu, H. Qiu, N. Ma, J. Gao, J. Alloys Compd. 674, 98–108 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Tang, X. Qi, W. Han, L. Ren, Y. Liu, X. Wang, J. Zhong, Appl. Surf. Sci. 355, 7–13 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Li, S.G. Leonardi, A. Bonavita, G. Neri, W. Wlodarski, Procedia Eng. 168, 1102–1105 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Cleaner Prod. 198, 11–18 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. El Mendili, J.-F. Bardeau, N. Randrianantoandro, A. Gourbil, J.-M. Grenèche, A. Mercier, F. Grasset, J. Raman Spectrosc. 42, 239–242 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. El Mendili, J.-F. Bardeau, N. Randrianantoandro, F. Grasset, J.-M. Grenèche. J. Phys. Chem. C 116, 23785–23792 (2012)CrossRefGoogle Scholar
  29. 29.
    D.G. Mead, J. C. Irwin, Solid State Commun. 20, 885–887 (1976)CrossRefGoogle Scholar
  30. 30.
    O.A. Yassin, A.A. Abdelaziz, A. Y. Jaber, Mater. Sci. Semicond. Process. 38, 81–86 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Zhou, T. Zhou, J. Hu, J. Li, CrystEngComm 14, 5627–5633 (2012)CrossRefGoogle Scholar
  32. 32.
    H. G. Hecht, J. Res. Natl. Bur. Stan. A 80 (1976) 567–583CrossRefGoogle Scholar
  33. 33.
    J. Katie, M.M. Hukovie, I. Sarie, M. Petravie, J. Electrochem. Soc. 164, 383–389 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Kabouche, Y. Louafi, B. Bellal, M. Trari, Appl. Phys. A 123, 545–553 (2017)CrossRefGoogle Scholar
  35. 35.
    M.A. Butler, D. S. Ginte, J. Electrochem. Soc. 125, 228–232 (1978)CrossRefGoogle Scholar
  36. 36.
    W.M. Haynes, Handbook of Chemistry and Physics, 95th edn. (CRC Press, Boca Raton, 2014–2015)Google Scholar
  37. 37.
    S. Omeiri, B. Hadjarab, M. Trari, Thin Solid Films. 519, 4277–4281 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Park, J. Park, R. Selvaraj, Y. Kim, J. Ind. Eng. Chem. 31, 269–275 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Kaizra, Y. Louafi, B. Bellal, M. Trari, G. Rekhila, Mater. Sci. Semicond. Process. 30, 554–560 (2015)CrossRefGoogle Scholar
  40. 40.
    L.L. Cheng, M.H. Liu, S.C. Wang, M.X. Wang, G.D. Wang, Q.Y. Zhou, Z. Q. Chen, Semicond. Sci. Technol. 28, 015020–015027 (2013)CrossRefGoogle Scholar
  41. 41.
    Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Nanoscale 7, 1325–1332 (2015)CrossRefGoogle Scholar
  42. 42.
    Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, J. Mu, P. Zhang, Z. Guo, Y. Liu, Nanoscale 5, 606–618 (2013)CrossRefGoogle Scholar
  43. 43.
    M.A. Bryushinin, G.B. Dubrovsky, I.A. Sokolov, Appl. Phys. B 68, 871–875 (1999)CrossRefGoogle Scholar
  44. 44.
    T. Wang, H. Meng, X. Yu, Y. Liu, H. Chen, Y. Zhu, J. Tang, Y. Tong, Y. Zhang, RSC Adv. 5, 15469–15478 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Kabouche
    • 1
  • Y. Louafi
    • 1
  • J.-F. Bardeau
    • 2
  • M. Trari
    • 3
    Email author
  1. 1.Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of ChemistryU.S.T.H.B.AlgiersAlgeria
  2. 2.Institut des Molécules et Matériaux du MansCNRS n° 6283, Le Mans UniversitéLe Mans Cedex 9France
  3. 3.Laboratory of Storage and Valorization of Renewable Energies, Faculty of the ChemistryU.S.T.H.B.AlgiersAlgeria

Personalised recommendations