Investigation of preparation and performance of CoxNi(1−x)(OH)2 for supercapacitor application

  • Jianxia Gou
  • Shengli XieEmail author


In this paper, CoxNi(1−x)(OH)2 with various molar ratios of Ni/Co is synthesized through chemical treatment. Effects of Ni/Co molar ratios on microstructure and property of CoxNi(1−x)(OH)2 are explored. It is found that electrochemical property of the Co–Ni hydroxides could be optimized for a Ni/Co molar ratio of 1. The obtained Co0.5Ni0.5(OH)2 exhibits the most hollow out structure and preferable electrochemical performance as electrode material in hybrid supercapacitor. The interconnected and porous architecture built by thin nanosheets of Co0.5Ni0.5(OH)2 facilitates ion diffusion and electron transportation. The experiment results further show that the property decay during charging/discharging may be caused by the collapse of structure.



This work is financially supported by the doctoral program of Binzhou University (2017Y05) and the Key research and development program of Binzhou University (2017ZDL03).


  1. 1.
    F.X. Ma, L. Yu, C.Y. Xu, X.W. Lou, Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci. 9, 862–866 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Simon, B. Dunn, Where do batteries end and supercapacitors begin. Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  3. 3.
    Z. Wang, Q. Qin, W. Xu, J. Yan, Y. Wu, Long cyclic life in manganese oxides based electrodes. ACS Appl. Mater. Interfaces 8, 18078–18088 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Zhou, Z. Li, W. Xing, H. Shen, X. Bi, T. Zhu, Z. Qiu, S. Zhuo, A new approach to tuning carbon ultramicropore size at sub-Angstrom level for maximizing specific capacitance and CO2 uptake. Adv. Funct. Mater. 26, 7955–7964 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du, H. Pang, Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment. Dalton Trans. 44, 17278–17285 (2015)CrossRefGoogle Scholar
  6. 6.
    J.L. Qi, J.H. Lin, X. Wang, J.L. Guo, L.F. Xue, J.C. Feng, W.D. Fei, Low resistance VFG-microporous hybrid Al-based electrodes for supercapacitors. Nano Energy 26, 657–667 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Wang, Q. Wu, Z. Zhang, Y. Zhang, J. Pan, Y. Li, Y. Zhao, L. Zhang, X. Cheng, H. Peng, Elastic and wearable ring-type supercapacitor. J. Mater. Chem. A 4, 3217–3222 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Wei, Y. Huang, X. Zhang, X. Chen, J. Yan, Soft-template hydrothermal systhesis of nanostructured copper(II) tungstate cubes for electrochemical charge storage application. Electrochim. Acta 220, 156–163 (2016)CrossRefGoogle Scholar
  9. 9.
    X. Shang, J.Q. Chi, S.S. Lu, J.X. Gou, B. Dong, X. Li, Y.R. Liu, K.L. Yan, Y.M. Chai, C.G. Liu, Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Appl. Surf. Sci. 392, 708–714 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. He, X. Xiao, L. Gao, S. Li, Y. Shen, Bouquet-like NiCo2O4@CoNi2S4 arrays for high-performance pseudocapacitors. ChemElectroChem 4, 607–612 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Wei, C. Cheng, W. Du, J. Ren, M. Li, J. Dong, K. Liu, Facile synthesis of mesoporous hierarchical ZnS@β-Ni(OH)2 microspheres for flexible solid state hybrid supercapacitors. RSC Adv. 6, 101016–101022 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Gou, S. Xie, Z. Yang, Y. Liu, Y. Chen, Y. Liu, C. Liu, A high-performance supercapacitor electrode material based on NiS/Ni3S4 composite. Electrochim. Acta 229, 299–305 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Xie, J. Gou, Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. J. Alloys Compd. 713, 10–17 (2017)CrossRefGoogle Scholar
  14. 14.
    P. Xu, J. Liu, P. Yan, C. Miao, K. Ye, K. Cheng, J. Yin, D. Cao, K. Li, G. Wang, Preparation of porous cadmium sulphide on nickel foam: a novel electrode material with excellent supercapacitor performance. J. Mater. Chem. A 4, 4920–4928 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Zhu, A.S. Childress, M. Karakaya, S. Dandeliya, A. Srivastava, Y. Lin, A.M. Rao, R. Podila, Defect-engineered graphene for high energy-and high-power-density supercapacitor devices. Adv. Mater. 28, 7185–7192 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Cheng, Y. Wang, N. Guo, J. Chang, W. Du, J. Zhao, C. Wei, Mesoporous quaternary Ce–Ni–Mn–Co oxides as electrode materials for high performance flexible solid-state asymmetric supercapacitors. ChemistrySelect 2, 1497–1503 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Cheng, D. Kong, C. Wei, W. Du, J. Zhao, Y. Feng, Q. Duan, Self-template synthesis of hollow ellipsoid Ni–Mn sulfides for supercapacitors, electrocatalytic oxidation of glucose and water treatment. Dalton Trans. 46, 5406–5413 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Liu, R. Ma, Y. Bando, T. Sasaki, A general strategy to layered transition-metal hydroxide nanocones: tuning the composition for high electrochemical performance. Adv. Mater. 24, 2148–2153 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Wang, C. Yan, A. Sumboja, J. Yan, P.S. Lee, Supercapacitors: achieving high rate performance in layered hydroxide supercapacitor electrodes. Adv. Energy Mater. 4, 4053–4053 (2014)Google Scholar
  21. 21.
    Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, Y. Zhang, Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A 2, 6540–6548 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H.E. Hoster, Y. Zhang, S. Zhang, S. Yang, Q. Yan, Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett. 13, 5408–5413 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Guo, L. Yu, C.Y. Wang, Z. Lin, X.W. Lou, Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties. Adv. Funct. Mater. 25, 5184–5189 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Gou, S. Xie, Y. Liu, C. Liu, Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials. Electrochim. Acta 210, 915–924 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5, 7388–7396 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Li, G. Li, L. Li, L. Liu, Y. Xu, H. Ding, T. Zhang, Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 8, 2562–2572 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135–3139 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Gou, Ni2P/NiS2 composite with phase boundaries as high-performance electrode material for supercapacitor. J. Electrochem. Soc. 164, A2956–A2961 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 4, 9160–9168 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Xie, Z. Hu, C. Lv, G. Sun, J. Wang, Y. Li, H. He, W. Jian, K. Li, CoxNi1–x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim. Acta 78, 205–211 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 1773–1780 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Zhou, Q. Liu, J. Gu, W. Zhang, D. Zhang, Microwave-assisted anchoring of flowerlike Co(OH)2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors. Electrochim. Acta 170, 328–336 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Zhao, M. Li, J. Li, C. Wei, Y. He, Y. Huang, Q. Li, Porous Ni–Co–Mn oxides prisms for high performance electrochemical energy storage. Appl. Surf. Sci. 425, 1158–1167 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Ansovini, C.J.J. Lee, C.S. Chua, H.R. Tan, W.R. Webb, R. Raja, Y. Lim, A highly active hydrogen evolution electrocatalyst based on a cobalt–nickel sulfide composite electrode. J. Mater. Chem. A 4, 9744–9749 (2016)CrossRefGoogle Scholar
  35. 35.
    V. Pralong, A. Delahaye-Vidal, B. Beaudoin, J.B. Leriche, J.M. Tarascon, Electrochemical behavior of cobalt hydroxide used as additive in the nickel hydroxide electrode. J. Electrochem. Soc. 147, 1306–1313 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and SafetyBinzhou UniversityBinzhouPeople’s Republic of China

Personalised recommendations