Preparation of La0.7Sr0.3CoO3-δ (LSC)@MnO2 core/shell nanorods as high-performance electrode materials for supercapacitors

  • Ling HeEmail author
  • Yao Shu
  • Wensheng Li
  • Maocheng Liu


Perovskite oxides have attracted significant attention as capacitor electrode materials owing to their unique physical and electronic properties. In this paper, a novel La0.7Sr0.3CoO3-δ (LSC)@MnO2 core–shell nanorod was synthesized by controlled electrospinning combined with hydrothermal synthesis. The LSC, as a typical perovskite-type material, with excellent stability and ion–electron double conductivity, can perfectly serve as conductive backbone. Grid-like MnO2 nanosheets are grown on LSC to form a unique core/shell nanostructure, could effectively improve the electrochemical performance of MnO2. The grid-like MnO2 nanosheets shell significantly increase the effective area over which the reaction may take place and reduce the ion/electron transmission distance, which is beneficial in that it shifts in ions and electrons, enhancing the electrochemical reaction kinetics thereof. LSC@MnO2 core/shell nanorods demonstrated good electrochemical performance with high capacitance (570 F g−1 at 1 A g−1), and revealed excellent cycling stability (capacitance retention remains at 97.2% after 5000 cycles). The asymmetric supercapacitor device (LSC@MnO2//AC) displayed a desirable energy density of 37.6 W h kg−1 at 375 W kg−1, and still remains at 23.3 W h kg−1 at a high power density of 7489.3 W kg−1, indicating that the LSC@MnO2 nanorods are an outstanding pseudo-capacitive electrode material, with significant potential for application in high-performance supercapacitors.



This work was supported by Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals [Grant Numbers 18LHPY006]; the Key Research and Development Program of Gansu Province [Grant Numbers 17JR7GA014]; National Natural Science Foundation of China [Grant Numbers 51674130].

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Qi, D. Zhang, S. Pan, X. Loh, X. Chen, Adv. Mater. 30, 1704531 (2017)CrossRefGoogle Scholar
  2. 2.
    W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H.M. Cheng, Y. Du, N. Tang, W. Ren, Adv. Mater. 29, 1701677 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Liu, J. Liu, S. Cheng, W. Cai, F. Yu, Y. Zhang, P. Wu, M. Liu, Chem. Eng. J. 328, 1385–8947 (2017)Google Scholar
  4. 4.
    F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 46, 6816–6854 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Zhao, Q. Zhao, B. Li, H. Xue, H. Pang, C. Chen, Nanoscale. 9, 15206–15225 (2017)CrossRefGoogle Scholar
  6. 6.
    T. Liu, F. Zhang, Y. Song, Y. Li, J. Mater. Chem. A. 5, 17705–17733 (2017)CrossRefGoogle Scholar
  7. 7.
    W. Lai, Y. Wang, X. Wang, A. Nairan, C. Yang, Adv. mater. Technol. 3, 1700168 (2017)CrossRefGoogle Scholar
  8. 8.
    Z. Zeng, Y. Liu, W. Zhang, H. Chewa, J. Wei, J. Power Sources. 358, 22–28 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, Energy Environ. Sci. 10, 941–949 (2017)CrossRefGoogle Scholar
  10. 10.
    Q. Hu, Z. Gu, X. Zheng, X. Zheng, X. Zhang, Chem. Eng. J. 304, 223–231 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Shao, H. You, Z. Zhai, T. Liu, M. Li, L. Zhang, Mate. Lett. 201, 122–124 (2017)CrossRefGoogle Scholar
  12. 12.
    H.J. Kim, S.Y. Kim, L.J. Lim, A.E. Reddy, C.V.V.M. Gopi, New. J. Chem. 41, 5493–5497 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, Chem. Select. 2, 9267–9276 (2017)Google Scholar
  14. 14.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Mate. Chem. Phys. 170, 266–275 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Pandit, D.P. Dubal, P. Gómez-Romero, B.B. Kale, B.R. Sankapal, Sci. Rep. 7, 43430 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H. Fan, Adv. Mater. 23, 2076–2081 (2011)CrossRefGoogle Scholar
  17. 17.
    W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, T. Zhai, Nano Energy. 35, 242–250 (2017)CrossRefGoogle Scholar
  18. 18.
    Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Adv. Energy Mater. 4, 1400064 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, J. Power Sources. 279, 138–145 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Deng, J. Chang, C. Wang, K. Chen, C. Lin, M. Tang, J. Chen, K. Lu, Energy Environ. Sci. 4, 3942 (2011)CrossRefGoogle Scholar
  21. 21.
    J.C.S. Jang, K. Shin, J. Jang, Appl. Mater. Inter. 5, 9186–9193 (2013)CrossRefGoogle Scholar
  22. 22.
    L.F. Chen, Y. Lu, L. Yu, X. Lou, Energy Environ. Sci. 10, 1777–1783 (2017)CrossRefGoogle Scholar
  23. 23.
    P. Guo, X. Huang, X. Zhu, Z. Lü, Y. Zhou, Fuel Cells. 13, 666–672 (2013)Google Scholar
  24. 24.
    N. Wang, Q. Zhang, P. Zhao, M. Yao, W. Hu, S. Komarnenib, Cera. Int. 43, 5687–5692 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Lv, Y. Zhang, Z. Lv, X. Huang, Z. Wang, X. Zhu, B. Wei, J. Mater. Sci. Mater. Electron. 28, 17020–17025 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Electrochim. Acta 178, 398–406 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Energy Environ. Sci. 4, 4761–4785 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Abouali, M.A. Garakani, B. Zhang, Z. Xu, E.K. Heidari, J.Q. Huang, J. Huang, J.K. Kim, ACS Appl. Mater Interfaces. 7, 13503–13511 (2015)CrossRefGoogle Scholar
  29. 29.
    Y.E. Miao, W. Fan, D. Chen, T. Liu, ACS Appl. Mat. Interfaces. 5, 4423–4428 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Hu, Y. Deng, K. Liang, X.Liu, and W. Hu, J. Solid State Electrochem. 19, 629–637 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Cheng, Y. Su, J. Liang, Wu, Z. Tao, J.Chen, Chem. Mater. 22, 898–905 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Jiang, N. Abushrenta, X.Y. Li, X. Sun, J. Mater. Sci. Mater. Electron. 28, 1281–1287 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Niu, G. Zhu, Z. Yin, Z. Dai, X. Hou, J. Shao, W. Huang, Y. Zhang, X. Dong, J. Mater. Chem. A. 5, 22939–22944 (2017)CrossRefGoogle Scholar
  34. 34.
    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)CrossRefGoogle Scholar
  35. 35.
    M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7, 12647 (2016)CrossRefGoogle Scholar
  36. 36.
    P. Liu, Z. Hu, Y.f. Liu, M. Yao, Q. Zhang, Z.j. Xu, Int. J. Electrochem. Sci. 9, 7986–7996 (2016)Google Scholar
  37. 37.
    X. Zhang, Y. Zhao, C. Xu, Nanoscale 6, 3638–3646 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Han, P. Tang, L. Zhang, Nano Energy. 7, 42–51 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Adv. Energy Mater. 5, 1401882 (2015)CrossRefGoogle Scholar
  40. 40.
    P. Ning, X. Duan, X. Ju, X. Lin, X. Tong, X. Pan, T. Wang, Q. Li, Electrochim. Acta 210, 754–761 (2016)CrossRefGoogle Scholar
  41. 41.
    E. Miniach, A. Śliwak, A. Moyseowicz, L. Fernández-Garcia, Z. González, M. Granda, R. Menendez, G. Gryglewicz, Electrochim. Acta. 240, 53–62 (2017)CrossRefGoogle Scholar
  42. 42.
    H. Gao, S. Cao, Y. Cao, Electrochim. Acta. 2017, 240 (2017)Google Scholar
  43. 43.
    M. Li, Q. Chen, H. Zhan, J. Alloy. Comp. 702, 236–243 (2017)CrossRefGoogle Scholar
  44. 44.
    T. Lee, D. Pham, R. Sahoo, J. Seok, T. Luu, Y. Lee, Energy Storage Mater. 12, 223–231 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations