Advertisement

Photoluminescence and impedance properties of rare-earth doped (K0.5Na0.5)NbO3 lead-free ceramics

  • Wenming Shi
  • Yao Feng
  • Tongyou Lu
  • Ying Lu
  • Juan Shen
  • Jing Xue
  • Juan DuEmail author
  • Peng Fu
  • Jigong Hao
  • Wei LiEmail author
Review
  • 91 Downloads

Abstract

Rare earth (RE) elements (Pr, Sm) doped K0.5Na0.5NbO3 (KNN) lead-free ceramics were fabricated using conventional solid-state reaction method and their properties were investigated. The X-ray methods indicate that Pr and Sm ions diffuse into the KNN lattice to form new homogenous solid solutions. After the doping of RE elements, the grain size decreases obviously and the phase structure translates from orthorhombic to pseudo cubic phase. The RE ions enter into the A-site of the KNN lattice to create new A-site vacancies, exhibiting “soft” characteristics. Existence of two semicircular arcs represents both grain and grain boundary property of the materials. The results of Ea indicate that oxygen vacancies dominate the conductivity properties of the ceramics from 425 to 525 °C The photoluminescence spectra of KNN + Pr exhibits orange emissions. Both the KNN + Sm and KNN + Pr/Sm ceramics exhibit yellowish green emission upon 406 nm light excitation. RE elements Pr and Sm-doped KNN ceramics may take an important role in many fields as multifunctional materials.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2018MEM011, ZR201709250374, ZR2017MEM019 and ZR2016EMM02), the National Key R&D Program of China (No. 2016YFB0402701) and the Key R&D project of Shandong Province (No. 2017GGX202008).

References

  1. 1.
    L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Tian, C. Hu, X. Meng, P. Tan, Z. Zhou, J. Li, B. Yang, Cryst. Growth Des. 15, 1180 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Zheng, J. Wang, X. Huo, R. Wang, S. Sang, S. Li, P. Zheng, W. Cao, J. Appl. Phys. 116, 044105 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467 (2011)CrossRefGoogle Scholar
  5. 5.
    L. Liu, Y. Huang, Y. Li, L. Fang, H. Dammak, H. Fan, M.P. Thi, Mater. Lett. 68, 300 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, W. Cao, J. Appl. Phys. 114, 104105 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Tian, B. Yao, P. Tan, Z.X. Zhou, G. Shi, D.W. Gong, R. Zhang, Appl. Phys. Lett. 106, 102903 (2015)CrossRefGoogle Scholar
  8. 8.
    L.J. Liu, D.P. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, J. Appl. Phys. 116, 184104 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  10. 10.
    Z.Y. Cen, X.H. Wang, Y. Huan, L.T. Li, J. Am. Ceram. Soc. 101, 2391 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Yao, Y. Li, N.N. Sun, J.H. Du, X.W. Li, L.W. Zhang, Q.W. Zhang, X.H. Hao, Ceram. Int. 44, 5961 (2018)CrossRefGoogle Scholar
  12. 12.
    Z.Y. Shen, W.C. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, J. Mater. Sci.: Mater. Electron. 28, 137 (2017)Google Scholar
  13. 13.
    F.L. Li, Q. Guo, J. Xing, Z. Tan, L.M. Jiang, L.X. Xie, J.G. Wu, W. Zhang, D.Q. Xiao, J.G. Zhu, J. Mater. Sci.: Mater. Electron. 28, 18090 (2017)Google Scholar
  14. 14.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)CrossRefGoogle Scholar
  15. 15.
    P. Li, X. Chen, F. Wang, B. Shen, J. Zhai, S. Zhang, Z. Zhou, ACS Appl. Mater. Interfaces 10, 28772 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, K. Wang, J. Li, Y.L. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci. 10, 528 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, B. Shen, J. Zhai, H. Zeng, J. Am. Ceram. Soc. 99, 752 (2016)CrossRefGoogle Scholar
  18. 18.
    Q.R. Yao, F.F. Wang, F. Xu, C.M. Leung, T. Wang, Y.X. Tang, X. Ye, Y.Q. Xie, D.Z. Sun, W.Z. Shi, ACS Appl. Mater. Interfaces 7, 5066 (2015)CrossRefGoogle Scholar
  19. 19.
    X.S. Wang, C.N. Xu, H. Yamada, Adv. Mater. 17, 1254 (2005)CrossRefGoogle Scholar
  20. 20.
    Q.W. Zhang, H.Q. Sun, T. Kuang, R.G. Xing, X.H. Hao, RSC Adv. 5, 4707 (2015)CrossRefGoogle Scholar
  21. 21.
    Q. Zhang, K. Chen, L.L. Wang, H.Q. Sun, X.S. Wang, X.H. Hao, J. Mater. Chem. C 3, 5275 (2015)CrossRefGoogle Scholar
  22. 22.
    P. Du, L. Luo, W. Li, W. Tao, H. Chen, J. Appl. Phys. 114, 124104 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Zhou, X. Liu, N. Qin, D.H. Bao, J. Appl. Phys. 110, 034102 (2011)CrossRefGoogle Scholar
  24. 24.
    Z.W. Zhang, Y.S. Peng, X.H. Shen, J.P. Zhang, S.T. Song, Q. Lia, J. Mater. Sci. 49, 2534 (2014)CrossRefGoogle Scholar
  25. 25.
    H.Q. Sun, D.F. Peng, X.S. Wang, M.M. Tang, Q.W. Zhang, X. Yao, J. Appl. Phys. 110, 016102 (2011)CrossRefGoogle Scholar
  26. 26.
    T. Wei, Y.Q. Wang, Q.J. Zhou, Z.P. Li, L.Q. Zhan, Q. Jin, Ceram. Int. 40, 16647 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M.P. Thi, Mater. Chem. Phys. 117, 138 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 56 (1982)CrossRefGoogle Scholar
  29. 29.
    L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, C. Hu, Mater. Chem. Phys. 126, 769 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A 104, 1047 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Du, X.J. Yi, Z.J. Xu, C.L. Ban, D.F. Zhang, P.P. Zhao, C.M. Wang, J. Alloy. Compd. 541, 454 (2012)CrossRefGoogle Scholar
  32. 32.
    T. Yan, F. Han, S. Ren, X. Ma, L. Fang, L. Liu, X. Kuang, B. Elouadi, Appl. Phys. A 124, 338 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Zhang, H. Deng, C. Chen, L. Li, D. Lin, X. Li, X. Zhao, H. Luo, Scr. Mater. 75, 50 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Justin, A. Varghese, K.R. Seema, Dayas, Mater. Sci. Eng. B 149, 47 (2008)CrossRefGoogle Scholar
  35. 35.
    T. Yan, F. Han, S. Ren, J. Deng, X. Ma, L. Ren, L. Fang, L. Liu, B. Peng, B. Elouadi, Mater. Res. Bull. 99, 403 (2018)CrossRefGoogle Scholar
  36. 36.
    L. Liu, X. Ma, M. Knapp, H. Ehrenberg, B. Peng, L. Fang, M. Hinterstein, Europhys. Lett. 118, 47001 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L.A. Schmitt, H. Fuess, M. Hoelzel, H. Dammak, M.P. Thi, M. Hinterstein, J. Eur. Ceram. Soc. 37, 1387 (2017)CrossRefGoogle Scholar
  38. 38.
    L. Liu, M. Knapp, L.A. Schmitt, H. Ehrenberg, L. Fang, H. Fuess, M. Hoelzel, M. Hinterstein, Europhys. Lett. 114, 47011 (2016)CrossRefGoogle Scholar
  39. 39.
    L. Liu, M. Knapp, H. Ehrenberg, L. Fang, L.A. Schmitt, H. Fuess, M. Hoelzel, M. Hinterstein, J. Appl. Crystallogr. 49, 574 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Deng, X. Sun, L. Liu, S. Liu, Y. Huang, L. Fang, B. Elouadi, J. Electron. Mater. 45, 4089 (2016)CrossRefGoogle Scholar
  41. 41.
    L. Liu, D. Shi, L. Fan, J. Chen, G. Li, L. Fang, B. Elouadi, J. Mater. Sci.: Mater. Electron. 26, 6592 (2015)Google Scholar
  42. 42.
    S. Wu, W. Zhu, L. Liu, D. Shi, S. Zheng, Y. Huang, L. Fang, J. Electron. Mater. 43, 1055 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, J. Hao, C.L. Mak, X. Wei, Opt. Express 19, 1824 (2011)CrossRefGoogle Scholar
  44. 44.
    H.K. Yang, J.W. Chung, B.K. Moon, B.C. Choi, J.H. Jeong, K.H. Kim, J. Phys. D 42, 085411 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenming Shi
    • 1
  • Yao Feng
    • 1
  • Tongyou Lu
    • 1
  • Ying Lu
    • 1
  • Juan Shen
    • 1
  • Jing Xue
    • 1
  • Juan Du
    • 1
    Email author
  • Peng Fu
    • 1
  • Jigong Hao
    • 1
  • Wei Li
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations