Advertisement

The effect of Yb3+ ion substitution on dielectric and microstructural properties of Y3Al5O12 ceramics

  • M. A. AlmessiereEmail author
  • B. Unal
  • A. Baykal
  • I. Ercan
Article
  • 81 Downloads

Abstract

The electrical and dielectric properties of Y3Al5O12 (yttrium aluminum garnet, YAG) ceramics are investigated in detail. YAG:(Yb)x (0.01 ≤ x ≤ 0.09) was synthesized by a solid state reaction and characterized by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The electrical and dielectric properties have been intensively studied under certain bias voltages up to a frequency of 10 MHz. These properties are dependent on the substitution rates, independent of the bias voltages. The experimental result shows that Yb3+ ion substitution into YAG ceramics significantly influences the conductivity, dielectric constant, and lossy mechanisms, which is probably owing to the 3d-Al ions and 4f-Yb ions incorporated at different positions of structural symmetries in Y3−xYbxAl5O12 (0.00 ≤ x ≤ 0.09) ceramics.

References

  1. 1.
    S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, J. Eur. Ceram. Soc. 26, 2051–2054 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Sunny, V. Viswanath, K.P. Surendran, M.T. Sebastian, Ceram. Int. 40, 4311–4317 (2014)CrossRefGoogle Scholar
  3. 3.
    T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, J. Eur. Ceram. Soc. 23, 2573–2578 (2003)CrossRefGoogle Scholar
  4. 4.
    S. Thomas, M.T. Sebastian, J. Am. Ceram. Soc. 92, 2975–2981 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Slimani, E. Hannachi, A. Hamrita, M.K. Salem, F. Ben Azzouz, A. Manikandan, M.K. Salem, Ceram. Int. 44, 19950–19957 (2018)CrossRefGoogle Scholar
  6. 6.
    R. Tummala, M. Kosec, W.K. Jones, D. Belavic, Electronic Packaging for High Reliability, Low Cost Electronics, vol. 57 (Kluwer Academic Publishers, Dordrecht, 1999), pp. 65–75Google Scholar
  7. 7.
    K. Maexa, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793–8841 (2003)CrossRefGoogle Scholar
  8. 8.
    G. Seeta, R. Raju, H. Chae, J. Jin, Y. Park, J.W. Chung, B.K. Moon, J.H. Jeong, S.M. Son, J.H. Kim, J. Optoelectron. Adv. Mater. 12, 1273–1278 (2010)Google Scholar
  9. 9.
    Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai, Mater. Res. Bull. 38, 1257–1265 (2003)CrossRefGoogle Scholar
  10. 10.
    H.M.H. Fadlalla, C.C. Tang, E.M. Elssfah, F. Shi, Mater. Chem. Phys. 109, 436–439 (2008)CrossRefGoogle Scholar
  11. 11.
    K.V. Benthem, C. Els¨asser, R.H. French, J. Appl. Phys. 90, 6156–6164 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Slimani, A. Baykal, N. Md. Amir, H. Tashkandi, S. Güngüneş, H.S. Guner, F. El Sayed, T.A. Aldakheel, A. Saleh, Manikandan, Ceram. Int. 44, 15995–16004 (2018)CrossRefGoogle Scholar
  13. 13.
    A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, P.Sri Renganathan, J. Magn. Magn. Mater. 452, 380–388 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Park, K.H. Kim, J. Yoon, M. Song, T. Kim, H. Hur, J. Eur. Ceram. Soc. 29, 1735–1741 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Geller, Zeitschrift Für Kristallographie-Cryst. Mater. 125, 1–47 (1967)Google Scholar
  16. 16.
    P. Nørby, K.M.Ø Jensen, N. Lock, M. Christensen, B. Iversen, Cryst. Growth 16, 2646–2652 (2016)CrossRefGoogle Scholar
  17. 17.
    E. Hema, A. Manikandan, M. Gayathri, M. Durka, S. Arul Antony, B.R. Venkatraman, ‎J. Nanosci. Nanotechnol. 16, 5929–5943 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Asiri, S. Güner, A. Demir, A. Yildiz, A. Manikandan, A. BaykalEmail, J. Inorg. Organomet. Polym. Mater. 28, 1065–1071 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Bakış, I.A. Auwal, B. Ünal, A. Baykal, Ceram. Int. 42, 11780–11795 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Zafar, A. Rahman, S. Shahzada, S. Anwar, M. Khan, A. Nisar, M. Ahmad, S. Karim, J. Alloy. Compd. 727, 683–690 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Want, B.H. Bhat, B.Z. Ahmad, J. Alloy. Compd. 627, 78–84 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, P. Deng, J. Opt. Soc. Am. B 21, 543–547 (2004)CrossRefGoogle Scholar
  23. 23.
    C. Li, H. Zuo, M. Zhang, J. Han, S. Meng, Trans. Nonferrous Metals Soc. China 17(1), 148–153 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Sözeri, F. Genç, B. Unal, A. Baykal, B. Aktas, J. Alloy. Compd. 660, 324 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, H. Sakai, J. Chem. Phys. 118, 4052 (2003)CrossRefGoogle Scholar
  26. 26.
    Md. Amir, B. Unal, M. Geleri, H. Güngüneş, E. Sagar, S.E. Shirsath, A. Baykal, Superlattices Microstruct. 88, 450 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Departments of Software and Computer EngineeringIstanbul Sabahattin Zaim UniversityKucukcekmeceTurkey
  3. 3.Department of Nano Medicine Research, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  4. 4.Biophysics Department, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations