One-pot in-situ synthesis of Ni(OH)2–NiFe2O4 nanosheet arrays on nickel foam as binder-free electrodes for supercapacitors

  • Zhuoqing Chang
  • Tingyu LiEmail author
  • Gang LiEmail author
  • Kaiying Wang


We present a facile and low-cost in-situ growth of Ni(OH)2–NiFe2O4 nanosheet arrays on nickel foams via one-pot hydrothermal process. Different amounts of Fe(NO3)3 solutions as the oxidant have been used to optimize morphology of the nanosheet arrays on nickel foams without any templates and nickel salts. The nanosheet arrays show excellent electrochemical stability as well as good electroconductivity. As an electrochemical electrode, it presents an optimized areal capacitance (1.434 F cm−2 at the current density of 1.0 mA cm−2) and excellent cycling stability (retaining 75.9% after 5000 cycles at 3.0 mA cm−2). This strategy holds great potential for low-cost and readily scalable production of high performance electrode materials for supercapacitors.



This research was supported by the National Natural Science Foundation of China (61674113, 51622507, and 61471255), Natural Science Foundation of Shanxi Province, China (2016011040), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (2016138).

Supplementary material

10854_2018_326_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1111 KB)


  1. 1.
    H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei, X. Gong, Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 17067–17075 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, J. Qian, X. Liu, Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem. Eng. J. 334, 1466–1476 (2018)CrossRefGoogle Scholar
  3. 3.
    B. Guan, Q.Y. Shan, H. Chen, D. Xue, K. Chen, Y.X. Zhang, Morphology dependent supercapacitance of nanostructured NiCo2O4 on graphitic carbon nitride. Electrochim. Acta 200, 239–246 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Chen, Q. Wu, M. Wen, C. Wang, Q. Wu, J. Wen, M. Zhu, Y. Wang, A tubular sandwich-structured CNT@Ni@Ni2(CO3)(OH)2 with high stability and superior capacity as hybrid supercapacitor. J Phys Chem C 121, 9719–9728 (2017)CrossRefGoogle Scholar
  5. 5.
    R.R. Salunkhe, Y.H. Lee, K.H. Chang, J.M. Li, P. Simon, J. Tang, N.L. Torad, C.C. Hu, Y. Yamauchi, Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chemistry 20, 13838–13852 (2014)CrossRefGoogle Scholar
  6. 6.
    Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, T. Le, F. Kang, M. Inagaki, Polymer blend techniques for designing carbon materials. Carbon 111, 546–568 (2017)CrossRefGoogle Scholar
  8. 8.
    J.-G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)CrossRefGoogle Scholar
  9. 9.
    J.G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, e1703950 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Yang, W. Liu, H. Niu, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao, J. Yan, Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res. 11, 4744–4758 (2018)CrossRefGoogle Scholar
  11. 11.
    J.-G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 74, 51–124 (2015)CrossRefGoogle Scholar
  12. 12.
    J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces 10, 18816–18823 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Ulaganathan, M.M. Maharjan, Q. Yan, V. Aravindan, S. Madhavi, β-Co(OH)2 nanosheets: a superior pseudocapacitive electrode for high-energy supercapacitors. Chem. Asian J. 12, 2127–2133 (2017)CrossRefGoogle Scholar
  14. 14.
    W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao, J. Yan, Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30, 1055–1068 (2018)CrossRefGoogle Scholar
  15. 15.
    J.-G. Wang, D. Jin, R. Zhou, C. Shen, K. Xie, B. Wei, One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 306, 100–106 (2016)CrossRefGoogle Scholar
  16. 16.
    J.-G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017)CrossRefGoogle Scholar
  17. 17.
    M.M. Vadiyar, S.C. Bhise, S.S. Kolekar, J.-Y. Chang, K.S. Ghule, A.V. Ghule, Low cost flexible 3-D aligned and cross-linked efficient ZnFe2O4 nano-flakes electrode on stainless steel mesh for asymmetric supercapacitors. J. Mater. Chem. A 4, 3504–3512 (2016)CrossRefGoogle Scholar
  18. 18.
    K.V. Sankar, R.K. Selvan, The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J. Power Sources 275, 399–407 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Anwar, K.S. Muthu, V. Ganesh, N. Lakshminarasimhanc, A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes. J Electrochem Soc 158, A976–A981 (2011)CrossRefGoogle Scholar
  20. 20.
    V. Venkatachalam, R. Jayavel, Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications. AIP Conf. Proc. 1667, 140016 (2015)CrossRefGoogle Scholar
  21. 21.
    Z.-Y. Yu, L.-F. Chen, S.-H. Yu, Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2, 10889 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Feng, W. Yang, Z. Wang, Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater. Sci. Eng. B 176, 1509–1512 (2011)CrossRefGoogle Scholar
  23. 23.
    S.B. Bandgar, M.M. Vadiyar, Y.-C. Ling, J.-Y. Chang, S.-H. Han, A.V. Ghule, S.S. Kolekar, Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Appl. Energy Mater. 1, 638–648 (2018)CrossRefGoogle Scholar
  24. 24.
    J.L. Gunjakar, A.M. More, V.R. Shinde, C.D. Lokhande, Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J. Alloy. Compd. 465, 468–473 (2008)CrossRefGoogle Scholar
  25. 25.
    Z.T. Yang, B.W. Cheng, Y.N. Zhao, Synthesis of NiFe2O4 nanoparticles and its supercapacitive properties. Appl. Mech. Mater. 275–277, 1733–1736 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Klewe, M. Meinert, A. Boehnke, K. Kuepper, E. Arenholz, A. Gupta, J.M. Schmalhorst, T. Kuschel, G. Reiss, Physical characteristics and cation distribution of NiFe2O4 thin films with high resistivity prepared by reactive co-sputtering. J. Appl. Phys. 115, 123903 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Liu, Y. Huang, X. Zhang, Enhanced electromagnetic absorption properties of reduced graphene oxide–polypyrrole with NiFe2O4 particles prepared with simple hydrothermal method. Mater. Lett. 120, 143–146 (2014)CrossRefGoogle Scholar
  28. 28.
    W. Zhang, B. Quan, C. Lee, S.K. Park, X. Li, E. Choi, G. Diao, Y. Piao, One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces 7, 2404–2414 (2015)CrossRefGoogle Scholar
  29. 29.
    P. Sen, A. De, Electrochemical performances of poly(3,4-ethylenedioxythiophene)–NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim. Acta 55, 4677–4684 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, L. Xu, J. Yan, W. Yan, C. Wu, J. Lian, Y. Huang, J. Bao, J. Qiu, L. Xu, Y. Xu, H. Xu, H. Li, Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor. J. Alloy. Compd. 726, 608–617 (2017)CrossRefGoogle Scholar
  31. 31.
    M.A. Oliver-Tolentino, J. Vázquez-Samperio, A. Manzo-Robledo, R.d.G. González-Huerta, J.L. Flores-Moreno, D. Ramírez-Rosales, A. Guzmán-Vargas, An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni–Fe LDH. J. Phys. Chem. C 118, 22432–22438 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao, J. Jiang, Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces 9, 15364–15372 (2017)CrossRefGoogle Scholar
  33. 33.
    K. Xu, X. Huang, Q. Liu, R. Zou, W. Li, X. Liu, S. Li, J. Yang, J. Hu, Understanding the effect of polypyrrole and poly(3,4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo2O4 electrodes. J. Mater. Chem. A 2, 16731–16739 (2014)CrossRefGoogle Scholar
  34. 34.
    J. Zeng, T. Song, M. Lv, T. Wang, J. Qin, H. Zeng, Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution. RSC Adv. 6, 54964–54975 (2016)CrossRefGoogle Scholar
  35. 35.
    Q. Zhou, M. Cui, K. Tao, Y. Yang, X. Liu, L. Kang, High areal capacitance three-dimensional Ni@Ni(OH)2 foams via in situ oxidizing Ni foams in mild aqueous solution. Appl. Surf. Sci. 365, 125–130 (2016)CrossRefGoogle Scholar
  36. 36.
    Q. Yang, T. Li, Z. Lu, X. Sun, J. Liu, Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 6, 11789–11794 (2014)CrossRefGoogle Scholar
  37. 37.
    L. Lv, D. Zha, Y. Ruan, Z. Li, X. Ao, J. Zheng, J. Jiang, H.M. Chen, W.H. Chiang, J. Chen, C. Wang, A universal method to engineer metal oxide-metal-carbon interface for highly efficient oxygen reduction. ACS Nano 12, 3042–3051 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Li, J. Xu, J. Lei, J. Zhang, F. McLarnon, Z. Wei, N. Li, F. Pan, A one-step, cost-effective green method to in situ fabricate Ni(OH)2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. J. Mater. Chem. A 3, 1953–1960 (2015)CrossRefGoogle Scholar
  39. 39.
    L. Lv, K. Xu, C. Wang, H. Wan, Y. Ruan, J. Liu, R. Zou, L. Miao, K. Ostrikov, Y. Lan, J. Jiang, Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim. Acta 216, 35–43 (2016)CrossRefGoogle Scholar
  40. 40.
    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  41. 41.
    H.-K. Kim, A.R. Kamali, K.C. Roh, K.-B. Kim, D.J. Fray, Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ. Sci. 9, 2249–2256 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Kuang, Y.X. Zhang, T.T. Li, K.F. Li, S.M. Zhang, G. Li, W. Zhang, Tunable synthesis of hierarchical NiCo2O4 nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors. J. Power Sources 283, 270–278 (2015)CrossRefGoogle Scholar
  43. 43.
    L. Lv, Z. Li, K.-H. Xue, Y. Ruan, X. Ao, H. Wan, X. Miao, B. Zhang, J. Jiang, C. Wang, K. Ostrikov, Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy 47, 275–284 (2018)CrossRefGoogle Scholar
  44. 44.
    L. Cao, G. Tang, J. Mei, H. Liu, Construct hierarchical electrode with NixCo3–xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. J. Power Sources 359, 262–269 (2017)CrossRefGoogle Scholar
  45. 45.
    Y. Lv, A. Liu, H. Che, J. Mu, Z. Guo, X. Zhang, Y. Bai, Z. Zhang, G. Wang, Z. Pei, Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chem. Eng. J. 336, 64–73 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MicroNano System Research CenterTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Microsystems-IMSUniversity of South-Eastern NorwayHortenNorway

Personalised recommendations