Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance

  • Chengli He
  • Heming Qian
  • Xiazhang LiEmail author
  • Xiangyu Yan
  • Shixiang Zuo
  • Junchao Qian
  • Qun Chen
  • Chao YaoEmail author


CeO2/black phosphorus (BP) heterostructure nanocomposite was synthesized via a two-step assembly method. The structure and optical property of the prepared composites were characterized by X-ray diffraction, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy (UV–Vis), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Photocatalytic degradation of bisphenol A (BPA) in simulated waste water was performed by using CeO2/BP nanocomposite as catalyst. Results indicated that the degradation rate of BPA reached 82.3% within 180 min, which was remarkably improved compared with pure CeO2 and BP due to the formation of indirect Z-scheme heterostructure intermediated by oxygen vacancies originated from CeO2. The unique heterostructure facilitated the charge transfer and preserved the high redox potential leading to improve the photocatalytic degradation performance.



This work was supported by the National Science Foundation of China (Grant Nos. 51674043, 51702026), Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (Grant No. BM2012110) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX18_0951).


  1. 1.
    M. Zhu, C. Zhai, M. Fujitsuka, T. Majima, Appl. Catal. B 221, 645 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Angew. Chem. 57, 2160 (2018)CrossRefGoogle Scholar
  3. 3.
    Z. Wang, Y. Xu, S.C. Dhanabalan, J. Sophia, C. Zhao, C. Xu, Y. Xiang, J. Li, H. Zhang, IEEE Photon. J. 8, 1 (2016)Google Scholar
  4. 4.
    L. Pan, X.D. Zhu, K.N. Sun, Y.T. Liu, X.M. Xie, X.Y. Ye, Nano Energy 30, 347 (2016)CrossRefGoogle Scholar
  5. 5.
    M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, Energy Environ. Sci. 9, 709 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Qiu, C. Xu, N. Zhou, H. Chen, F. Jiang, Appl. Catal. B 221, 27 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Liu, Z. Huang, X. Ren et al., J. Mater. Sci. 29, 4441 (2017)Google Scholar
  8. 8.
    M. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, T. Majima, Appl. Catal. B 217, 285 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S.C. Dhanabalan, J.S. Ponraj, S. Wang, Adv. Energy Mater. 7, 1700396 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Adv. Funct. Mater. 27, 1606834 (2017)CrossRefGoogle Scholar
  11. 11.
    X. Li, F. Li, X. Lu, S. Zuo, Z. Zhuang, C. Yao, Funct. Mater. Lett. 10, 1750078 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Ge, Z. Li, Chin. J. Catal. 38, 1794 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Guo, C.G. Niu, X.J. Wen, L. Zhang, C. Liang, X.G. Zhang, D.L. Guan, N. Tang, G.M. Zeng, J. Colloid Interface Sci. 513, 852 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao, R. Chen, Appl. Catal. B 205, 281–291 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Cao, B. Ravikumar, S. Hussain, A. Ayeshamariam, N. Aslam, K. Naseer, J. Mater. Sci. 27, 1873 (2015)Google Scholar
  16. 16.
    S. Kumar, A. Kumar, Mat. Sci. Eng. B 223, 98 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen, Z. Zhang. X. Ma, F. Li, H.M. Cheng, W. Ren, Adv. Mater. 28, 510 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Wang, Q. Mu, T. Chen, Y. Wang, J. Alloys Compd. 493, 202 (2010)CrossRefGoogle Scholar
  19. 19.
    D. Zhang, H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu, W. Yu, Inorg. Chem. 46, 2446 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)CrossRefGoogle Scholar
  21. 21.
    S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, N. J. Chem. 39, 4708 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Arai, D.L. Sparks, J. Colloid Interface Sci. 241, 317 (2001)CrossRefGoogle Scholar
  23. 23.
    M. Iwase, K. Yamada, T. Kurisaki, O.O. Prieto-Mahaney, B. Ohtani, H. Wakita, Appl. Catal. B 132–133, 39 (2013)CrossRefGoogle Scholar
  24. 24.
    E. Passaglia, F. Cicogna, F. Costantino, S. Coiai, S. Legnaioli, G. Lorenzetti, S. Borsacchi, M. Geppi, F. Telesio, S. Heun, A. Ienco, M. Serrano-Ruiz, M. Peruzzini, Chem. Mater. 30, 2036 (2018)CrossRefGoogle Scholar
  25. 25.
    X. Li, X. Yan, S. Zuo, X. Lu, S. Luo, Z. Li, C. Yao, C. Ni, Chem. Eng. J. 320, 211 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA
  3. 3.Jiangsu Key Laboratory for Environment Functional MaterialsSuzhou University of Science and TechnologySuzhouPeople’s Republic of China

Personalised recommendations