Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications

  • R. Bomila
  • S. Suresh
  • S. Srinivasan


Pure and dual doped ZnO nanoparticles were synthesized via the wet chemical method. The synthesized samples were characterized by XRD, HR-SEM/EDS, HR-TEM, UV–Vis, PL, FT-IR, and FT-Raman spectral measurements. The prepared ZnO nanoparticles exhibit a hexagonal wurtzite structure and [Ce–La, La–Gd, Gd–Ce] rare earth dual doped ZnO nanoparticles was confirmed from the shift in XRD peaks position, cell parameter and also changes in the peaks intensity. HR-SEM/EDS and HR-TEM show spherical in shape with less agglomeration on the surface of all samples and the images are clearly revealed that the particle size ~ 40 nm (PZ), 14 nm (ZCL3), 16 nm (ZLG3) and 28 nm (ZGC3). UV–Vis spectra show a strong Ultraviolet region absorbance for ZCL3 sample with the low Energy band gap value of 2.81 eV. The presences of the functional group and molecular vibrations are characterized by employing the FT-IR and FT-Raman spectra. From the PL spectra, it was found that the peak position of all samples produces a visible emission. The photocatalytic performance of the synthesized doped nanoparticles found to exhibit better degradation of MB dye under solar irradiation ZCL3 showed an increase in the photo catalytic decolorization efficiency. The bactericidal activity of dual doped ZnO nanoparticles was investigated against Gram-positive and Gram-negative bacteria and compare with standard ampicillin. We observe that ZCL3 sample have excellent antibacterial activity against Gram-negative bacteria (P. mirabilis) and the mean zone of inhibition ~ 20 mm.


  1. 1.
    B. Nowack, in Pollution Prevention and Treatment Using Nanotechnology (Wiley, Weinheim, 2010) Google Scholar
  2. 2.
    A.K. Mishraa, D. Das, Investigation on Fe-doped ZnO nanostructures prepared by a chemical route. Mater. Sci. Eng. B 171, 5–10 (2010)CrossRefGoogle Scholar
  3. 3.
    M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photocatalytic, and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65, 1797–1800 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Gerischer, A. Heller, Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water. J. Electrochem. Soc. 139, 113–118 (1992)CrossRefGoogle Scholar
  5. 5.
    O. Seven, B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J. Photochem. Photobiol. A Chem. 165, 103–107 (2004)CrossRefGoogle Scholar
  6. 6.
    D.P. Singh, Synthesis and growth of ZnO nanowires. Sci. Adv. Mater. 2, 245–272 (2010)CrossRefGoogle Scholar
  7. 7.
    G.S. Yi, H.C. Lu, S.Y. Zhao, G. Yue, W.J. Yang, D.P. Chen, L.H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 42, 2191–2196 (2004)CrossRefGoogle Scholar
  8. 8.
    L. Wang, R.X. Yan, Z.Y. Hao, L. Wang, J.H. Zeng, J. Bao, X. Wang, Q. Peng, Y.D. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054–6057 (2005)CrossRefGoogle Scholar
  9. 9.
    N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, R. Poonguzhali, The effect of Ce4+ incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles. J. Mater. Charact. 97, 37–42 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Structure evaluation and highly enhanced luminescence of Dy3+ Doped ZnO nanocrystals by Li+ doping via combustion method. Langmuir 20, 3528–3531 (2004)CrossRefGoogle Scholar
  11. 11.
    G.S. Yi, B.Q. Sun, F.Z. Yang, D.P. Chen, Y.X. Zhou, J. Cheng, Synthesis and characterization of high-efficiency nanocrystal upconversion phosphors: ytterbium and erbium codoped lanthanum molybdate. Chem. Mater. 14, 2910–2914 (2002)CrossRefGoogle Scholar
  12. 12.
    M.U. Staudt, S.R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Sachet, W. Sohler, W. Tittel, N. Gisin, Fidelity of an optical memory based on stimulated photon echoes. Phys. Rev. Lett. 98, 113601–113604 (2007)CrossRefGoogle Scholar
  13. 13.
    G. Poongodi, R. Mohan Kumar, R. Jayavel, Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceram. Int. 41, 4169–4175 (2015)CrossRefGoogle Scholar
  14. 14.
    Y.R. Ryu, W.J. Kim, H.W. White, Fabrication of homostructural ZnO p–n junctions. J. Cryst. Growth 219, 419–422 (2000)CrossRefGoogle Scholar
  15. 15.
    P. Aneesh, K.A. Vanaja, M.K. Jayaraj, Synthesis of ZnO nanoparticles by hydrothermal method. Nanophotonic Mater. IV 6639, 66390J (2007)CrossRefGoogle Scholar
  16. 16.
    N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Hamedi, A, High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 6, 863–869 (2011)CrossRefGoogle Scholar
  17. 17.
    E. Kowsari, Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. J. Nanopart. Res. 13, 3363–3376 (2011)CrossRefGoogle Scholar
  18. 18.
    Z.Q. Li, Y.J. Xiong, Y. Xie, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorg. Chem. 42, 8105–8109 (2003)CrossRefGoogle Scholar
  19. 19.
    X. Wang, Y. Ding, Z. Li, J. Song, Z.L. Wang, Single-crystal mesoporous ZnO thin films composed of nanowalls. J. Phys. Chem. C 113, 1791–1794 (2009)CrossRefGoogle Scholar
  20. 20.
    T. Thangeeswari, M. Priya, J. Velmurugan, N. Padmanathan, Optical and magnetic properties of Yb ion-doped cobalt-based ZnO. Bull. Mater. Sci. 38, 1389–1398 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Bingqiang, C. Weiping, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C 112(3), 680–685 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Dewei, L. Sean, Growth and electrical properties of doped ZnO by electrochemical deposition. New J. Glass Ceram. 2, 13–16 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Zamiri, A.F. Lemos, A. Reblo, H.A. Ahangar, J.M.F. Ferreira, Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram. Int. 40, 523–529 (2014)CrossRefGoogle Scholar
  24. 24.
    G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuators B 112, 78–83 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Anandan, M. Miyauchi, Ce-doped ZnO (Cex Zn1– xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys. Chem. Chem. Phys. 13, 14937–14945 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Iqbal. X. Liu, H. Zhu, Z.B. Wu, Y. Zhang, D. Yu, R. Yu, Raman and highly ultraviolet red-shifted near band-edge properties of LaCe-co-doped ZnO nanoparticles. Acta Mater. 57, 4790–4796 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Ravichandran, R. Mohan, B. Sakthivel, S. Varadharaja perumal, P. Devendran, T. Alagesan, K. Pandian, Enhancing the photocatalytic efficiency of sprayed ZnO thin films through double doping (Sn + F) and annealing under different ambiences. Appl. Surf. Sci. 321, 310–317 (2014)CrossRefGoogle Scholar
  29. 29.
    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622–624 (2002)CrossRefGoogle Scholar
  30. 30.
    K. Ravichandran, S. Snega, N. Jabena Begum, K. Swaminathan, B. Sakthivel, L. Rene Christena, G. Chandramohan, S. Ochiai, Enhancement in the antibacterial efficiency of ZnO nanopowders by tuning the shape of the nanograins through fluorine doping. Superlattices Microstruct. 69, 17–28 (2014)CrossRefGoogle Scholar
  31. 31.
    J.M. Martínez, R.G. Meneses, C. Silva, Synthesis of gadolinium doped ceria ceramic powder by polymeric precursor method (Pechini). Mater. Sci. Forum 798–799, 182–188 (2014)CrossRefGoogle Scholar
  32. 32.
    K. Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry (Wiley, New York, 1997)Google Scholar
  33. 33.
    S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11, 6–12 (2008)CrossRefGoogle Scholar
  34. 34.
    Y. Yang, L. Ren, C. Zhang, S. Huang, T. Liu, Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. ACS Appl. Mater. Interfaces 3, 2779–2785 (2011)CrossRefGoogle Scholar
  35. 35.
    H. Du, J. Ye, J. Zhang et al., A voltammetric sensor based on graphenemodified electrode for simultaneous determination of catechol and hydroquinone. J. Electroanal. Chem. 650, 209–213 (2011)CrossRefGoogle Scholar
  36. 36.
    J.C. Sin, S. Mun Lam, K. Teong Lee, A. Mohamed, R, Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceram. Int. 40, 5431–5440 (2014)CrossRefGoogle Scholar
  37. 37.
    S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Mater. Lett. 93, 423–426 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)CrossRefGoogle Scholar
  39. 39.
    B.N. Joshi, H. Yoon, S.H. Na, J.Y. Choi, S.S. Yoon, Enhanced photocatalytic performance of graphene-ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition. Ceram. Int. 40, 3647–3654 (2014)CrossRefGoogle Scholar
  40. 40.
    P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Prepara- tion and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl.Surf.Sci 258, 8192–8198 (2012)CrossRefGoogle Scholar
  41. 41.
    Y. Liu, J. Han, W. Qiu, W. Gao, Hydrogen peroxide generation and photocatalytic degradation festrone by microstructural controlled ZnO nanorod arrays. Appl. Surf. Sci. 263, 389–396 (2012)CrossRefGoogle Scholar
  42. 42.
    B.L. Guo, P. Han, L. Chuan Guo, Y.Q. Cao, A.D. Li, J.Z. Kong, H.F. Zhai, D. Wu, The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale. Res. Lett. 10, 336 (2015)CrossRefGoogle Scholar
  43. 43.
    A. Jain, R. Bhargava, P. Poddar, Probing interaction of Gram-positive and Gram-negative bacteria cells with ZnO nanorods. Mater. Sci. Eng. 33, 1247–1253 (2013)CrossRefGoogle Scholar
  44. 44.
    R. Wahab, A. Mishra, S. IlYun, I.H. Hwang, J. Mussarat, A.A. Al-Khedhairy, Y.S. Kim, H.S. Shi, Fabrication, growth mechanism and antibacterial activity of ZnO micro-spheres prepared via solution process. Biomass Bioenergy 39, 227–236 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)CrossRefGoogle Scholar
  46. 46.
    A.A. Tayel, W.F. El-tras, S. Moussa, A.F. El-baz, H. Mahrous, M.F. Salem, L. Brimer, Antibacterial action of zinc oxide nanoparticles against food borne pathogens. J. Food Saf. 31, 211–218 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPresidency CollegeChennaiIndia
  2. 2.Department of PhysicsSaveetha Engineering CollegeChennaiIndia

Personalised recommendations