Investigations on preferentially oriented Al-doped ZnO films developed using rf magnetron sputtering

  • Nalin Prashant Poddar
  • S. K. MukherjeeEmail author


Preferentially oriented Al-doped ZnO (AZO) films of thickness 0.5–4 µm are prepared using rf magnetron sputtering. The structural, optical and electrical properties of the films deposited on glass substrates are analyzed using X-ray diffraction (XRD), field effect scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analyses, Raman spectroscopy, UV–visible (UV–Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and four-point probe measurements. The observed deposition rate is 16 ± 0.6 nm/min. EDX results confirm an Al content of (2.6 ± 0.3) % in the films. XRD results show that the deposited films are crystalline and are preferentially oriented along (002) plane with their c-axis perpendicular to the substrate plane. The average crystallite size (22–39 nm) increases with film thickness. FESEM micrographs confirm that the surface morphology of the films is rough and shows irregular hills and valleys like patterns due to grain overlapping. Raman spectra show A1 (LO) and A1 (TO) modes of wurtzite ZnO and three prominent anomalous modes 273, 510 and 577 cm−1 which are the characteristics of doped ZnO. FTIR results confirm the presence of Zn–O and Al–O stretching modes in the films. Optical transmittance of the films at 550 nm decreases from 77 to 25% with the increase in film thickness. Their band gap also decreases from 3.39 eV to 2.53 eV. The resistivity of the films gradually reduces beyond a thickness of 1 µm to 1.42 × 10−4 Ωcm. The obtained resistivity values are comparable to that of In-doped SnO2 (ITO).



The authors wish to express their sincere thanks to UGC DAE Consortium for Scientific Research, Indore for XRD measurements. The authors also want to acknowledge the cooperation of the Central Instrumental Facility (CIF), Birla Institute of Technology, Ranchi for rest of the characterization work. One of the authors (Nalin Prashant Poddar) is thankful to Birla Institute of Technology, Ranchi for the award of Institute Fellowship.


  1. 1.
    T. Minami, Semicond. Sci. Technol. 20, S35–S44 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Minami, T. Miyata, Thin Solid Films 517, 1474–1477 (2008)CrossRefGoogle Scholar
  3. 3.
    X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15, 383 (2016)CrossRefGoogle Scholar
  4. 4.
    Ü Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 11 (2005)CrossRefGoogle Scholar
  5. 5.
    S.E. Pust, J.P. Becker, J. Worbs, S.O. Klemm, K.J.J. Mayrhofer, J. Hüpkes, J. Electrochem. Soc. 158, D413–D419 (2011)CrossRefGoogle Scholar
  6. 6.
    T. Minami, MRS Bull. 25, 38–44 (2000)CrossRefGoogle Scholar
  7. 7.
    T. Minami, H. Nanto, S. Takata, Appl. Phys. Lett. 41, 958–960 (1982)CrossRefGoogle Scholar
  8. 8.
    H. Nanto, T. Minami, S. Shooji, S. Takata, J. Appl. Phys. 55, 1029–1034 (1984)CrossRefGoogle Scholar
  9. 9.
    N. Srinatha, Y. No, V.B. Kamble, S. Chakravarty, N. Suriya Murthy, B. Angadi, A. Umarji, W. Choi, RSC Adv. 6, 9779–9788 (2016)CrossRefGoogle Scholar
  10. 10.
    T.M.K. Thandavan, S.M.A. Gani, C. San Wong, R.M. Nor, PLoS ONE 10, 0121756 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Shahid, K. Deen, A. Ahmad, M. Akram, M. Aslam, W. Akhtar, Appl. Nanosci. 6, 235–241 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Cai, G. Jiang, C. Zhu, D. Wang, Phys. Status Solidi A 206, 1461–1464 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Burunkaya, N. Kiraz, Ö Kesmez, H.E. Camurlu, M. Asilturk, E. Arpac, ‎J. Sol Gel Sci. Technol. 55, 171–176 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Majumder, M. Jain, P. Dobal, R. Katiyar, Mater. Sci. Eng. B 103, 16–25 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 19, 704–708 (2008)CrossRefGoogle Scholar
  16. 16.
    T. Miyata, Y. Minamino, S. Ida, T. Minami, J. Vac. Sci. Technol. A 22, 1711–1715 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Venkatachalam, Y. Iida, Y. Kanno, Superlattices Microstruct. 44, 127–135 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Sahu, S.Y. Lin, J.L. Huang, Microelectron. J. 38, 245–250 (2007)CrossRefGoogle Scholar
  19. 19.
    M.C. Pan, T.H. Wu, T.A. Bui, W.C. Shih, J. Mater. Sci. Mater. Electron. 23, 418–424 (2012)CrossRefGoogle Scholar
  20. 20.
    Z. Laghfour, T. Ajjammouri, S. Aazou, S. Refki, D. Nesterenko, A. Rahmouni, M. Abd-Lefdil, A. Ulyashin, A. Slaoui, Z. Sekkat, J. Mater. Sci. Mater. Electron. 26, 6730–6735 (2015)CrossRefGoogle Scholar
  21. 21.
    J.H. Lee, J. Electroceramics 23, 512–518 (2009)CrossRefGoogle Scholar
  22. 22.
    S.S. Lin, J.L. Huang, Surf. Coat. Technol. 185, 222–227 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Thin Solid Films 515, 6562–6566 (2007)CrossRefGoogle Scholar
  24. 24.
    K.H. Ri, Y. Wang, W.L. Zhou, J.X. Gao, X.J. Wang, J. Yu, Appl. Surf. Sci. 258, 1283–1289 (2011)CrossRefGoogle Scholar
  25. 25.
    D.S. Ginley, C. Bright, MRS Bull. 25, 15–18 (2000)CrossRefGoogle Scholar
  26. 26.
    K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764–7772 (1997)CrossRefGoogle Scholar
  27. 27.
    Q. Hou, F. Meng, J. Sun, Nanoscale Res. Lett. 8, 144 (2013)CrossRefGoogle Scholar
  28. 28.
    W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669–5673 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Guillén, J. Herrero, Vacuum 84, 924–929 (2010)CrossRefGoogle Scholar
  30. 30.
    B.C. Mohanty, B.K. Kim, D.H. Yeon, Y.H. Jo, I.J. Choi, S.M. Lee, Y.S. Cho, J. Electrochem. Soc. 159, H96–H101 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Van der Drift, Philips Res. Rep 22, 267 (1967)Google Scholar
  32. 32.
    N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth 130, 269–279 (1993)CrossRefGoogle Scholar
  33. 33.
    S.Y. Pung, K.L. Choy, X. Hou, C. Shan, Nanotechnology 19, 435609 (2008)CrossRefGoogle Scholar
  34. 34.
    F. Paraguay, D.W. Estrada, L.D.R. Acosta, N.E. Andrade, M.M. Yoshida, Thin Solid Films 350, 192–202 (1999)CrossRefGoogle Scholar
  35. 35.
    C.C. Ting, S.Y. Chen, D.M. Liu, Thin Solid Films 402, 290–295 (2002)CrossRefGoogle Scholar
  36. 36.
    S. Rodil, O.G. Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, A. Zeinert, Thin Solid Films 636, 384–391 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, W. Paszkowicz, J. Cryst. Growth 310, 284–289 (2008)CrossRefGoogle Scholar
  38. 38.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)CrossRefGoogle Scholar
  39. 39.
    G. Kaur, A. Mitra, K. Yadav, Prog. Nat. Sci. Mater. Int 25, 12–21 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Chang, H.L. Wang, M.H. Hon, J. Cryst. Growth 211, 93–97 (2000)CrossRefGoogle Scholar
  41. 41.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666–670 (1974)CrossRefGoogle Scholar
  42. 42.
    J. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977)CrossRefGoogle Scholar
  43. 43.
    J. Serrano, A. Romero, F. Manjon, R. Lauck, M. Cardona, A. Rubio, Phys. Rev. B 69, 094306 (2004)CrossRefGoogle Scholar
  44. 44.
    H. Liu, S. Chua, Appl. Phys. Lett. 96, 091902 (2010)CrossRefGoogle Scholar
  45. 45.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974–1976 (2003)CrossRefGoogle Scholar
  46. 46.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. Alves, D. Hofmann, et al. Appl. Phys. Lett. 80, 1909–1911 (2002)CrossRefGoogle Scholar
  47. 47.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1966)CrossRefGoogle Scholar
  48. 48.
    M. Nafees, W. Liaqut, S. Ali, M.A. Shafique, Appl. Nanosci. 3, 49–55 (2013)CrossRefGoogle Scholar
  49. 49.
    N.R. Yogamalar, A.C. Bose, J. Alloys Compd. 509, 8493–8500 (2011)CrossRefGoogle Scholar
  50. 50.
    P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Sens. Actuator A 164, 8–14 (2010)CrossRefGoogle Scholar
  51. 51.
    A. Srivastava, M. Praveen, S. Arora, B. Gupta, S. Chakraborty, S. Chandra, H. Toyoda, Bahadur, J. Mater. Sci. Technol. 26, 986–990 (2010)CrossRefGoogle Scholar
  52. 52.
    F. Meriche, T. Touam, A. Chelouche, M. Dehimi, J. Solard, A. Fischer, A. Boudrioua, L.-H. Peng, Electron. Mater. Lett. 11, 862–870 (2015)CrossRefGoogle Scholar
  53. 53.
    R. Menon, V. Gupta, H. Tan, K. Sreenivas, C. Jagadish, J. Appl. Phys. 109, 064905 (2011)CrossRefGoogle Scholar
  54. 54.
    A. Djelloul, M. Aida, J. Bougdira, J. Lumin. 130, 2113–2117 (2010)CrossRefGoogle Scholar
  55. 55.
    S. Alias, A. Ismail, A. Mohamad, J. Alloys Compd. 499, 231–237 (2010)CrossRefGoogle Scholar
  56. 56.
    A. Mallika, A.R. Reddy, K.S. Babu, K.V. Reddy, Ceram. Int. 40, 12171–12177 (2014)CrossRefGoogle Scholar
  57. 57.
    Y. Li, J. Wang, Y. Kong, J. Zhou, J. Wu, G. Wang, H. Bi, X. Wu, W. Qin, Q. Li, Sci. Rep. 6, 19187 (2016)CrossRefGoogle Scholar
  58. 58.
    G.C. Yi, B.W. Wessels, Appl. Phys. Lett. 70, 357–359 (1997)CrossRefGoogle Scholar
  59. 59.
    V. Musat, B. Teixeira, E. Fortunato, R. Monteiro, P. Vilarinho, Surf. Coat. Technol. 180, 659–662 (2004)CrossRefGoogle Scholar
  60. 60.
    M. Ohyama, H. Kozuka, T. Yoko, J. Am. Ceram. Soc. 81, 1622–1632 (1998)CrossRefGoogle Scholar
  61. 61.
    B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, H. Hahn, J. Appl. Phys. 108, 103721 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBirla Institute of TechnologyRanchiIndia

Personalised recommendations