Advertisement

Highly efficient inverted planar perovskite solar cells from TiO2 nanoparticles modified interfaces between NiO hole transport layers and conductive glasses

  • Kaiming Deng
  • Jie Tang
  • Zhang LanEmail author
Article
  • 97 Downloads

Abstract

It has been demonstrated that the interfaces in perovskite solar cells (PSCs) have significant influence on photovoltaic performance of PSCs. So interface engineering is very important for achieving high power conversion efficiency (PCE). However, an important interface of fluorine-doped tin oxide conductive glass (FTO)/hole transport layer (HTL) in the inverted planar PSCs is customarily missed. Here, we verify that through modification of the interface between FTO and NiO HTL with ultra-small TiO2 nanocrystals (NCs), the PCE of inverted planar PSCs can be obviously enhanced from the original 15.23% to the highest value of 16.21%. The optical transmittance spectra show that the TiO2 NCs modification has little influence on the transparency of the substrates. The PL and TRPL data reveal clearly enhanced hole-extracting speed owing to the improve coverage and quality of the NiO HTLs on TiO2 NCs-modified FTOs. These features are important reasons for the improved photovoltaic performance of the corresponding devices. This work highlights an effective way for enhancing photovoltaic performance of the inverted planar PSCs through modifying the interfaces between the transparent conductive substrates and the HTLs.

Notes

Acknowledgements

The authors would like to acknowledge the supports of the National Natural Science Foundation of China (Grant Nos. 61474047 and 51472094), the Fujian Provincial Youth Top-notch Talents Supporting Program, the Graphene Powder & Composite Research Center of Fujian Province (Grant No. 2017H2001), and the Cultivation Program for Postgraduate in Scientific Research Innovation Ability of Huaqiao University (Grant No. 1611402002).

References

  1. 1.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  2. 2.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  3. 3.
    W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S. I. Seok, Science 356, 1376 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Weber, T. Rath, J. Mangalam, B. Kunert, A.M. Coclite, M. Bauch, T. Dimopoulos, G. Trimmel, J. Mater. Sci. 29, 1847 (2018)Google Scholar
  5. 5.
    D.L. Shen, A.Y. Pang, Y.F. Li, J. Dou, M.D. Wei, Chem. Commun. 54, 1253 (2018)CrossRefGoogle Scholar
  6. 6.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)CrossRefGoogle Scholar
  7. 7.
    G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)CrossRefGoogle Scholar
  8. 8.
    H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)CrossRefGoogle Scholar
  9. 9.
    L.S. Liang, P. Gao, Adv. Sci. 5, 1700331 (2018)CrossRefGoogle Scholar
  10. 10.
    Z.L. Zhu, Y. Bai, T. Zhang, Z.K. Liu, X. Long, Z.H. Wei, Z.L. Wang, L.X. Zhang, J.N. Wang, F. Yan, S.H. Yang, Angew. Chem. Int. Ed. 53, 12571 (2014)Google Scholar
  11. 11.
    S.Y. Ye, W.H. Sun, Y.L. Li, W.B. Yan, H.T. Peng, Z.Q. Bian, Z.W. Liu, C.H. Huang, Nano Lett. 15, 3723 (2015)CrossRefGoogle Scholar
  12. 12.
    T.H. Chowdhury, R. Kaneko, M.E. Kayesh, M. Akhtaruzzaman, K.B. Sopian, J.J. Lee, A. Islam, Mater. Lett. 223, 109 (2018)CrossRefGoogle Scholar
  13. 13.
    H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Science 345, 542 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Lei, S.D. Zhang, S.W. Yang, X.M. Li, Y. Yu, Q.Z. Wei, Z.C. Ni, M. Li, Nanotechnology 29, 255201 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Liu, Y. Yang, Y. Ding, J. Xu, X.L. Liu, B. Zhang, J.X. Yao, T. Hayat, A. Alsaedi, S.Y. Dai, ChemSusChem 11, 1232 (2018)CrossRefGoogle Scholar
  16. 16.
    N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Gratzel, Science 358, 6364 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, F.X. Yu, L.H. Chen, J.F. Li, Appl. Surf. Sci. 443, 176 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Cao, B.H. Wu, R.H. Chen, Y.Y.Q. Wu, Y. Hui, B.W. Mao, N.F. Zheng, Adv. Mater. 30, 1705596 (2018)CrossRefGoogle Scholar
  19. 19.
    W.Z. Li, C.L. Zhang, Y.P. Ma, C. Liu, J.D. Fan, Y.H. Mai, R.E.I. Schropp, Energy Environ. Sci. 11, 286 (2018)CrossRefGoogle Scholar
  20. 20.
    F. Zhang, J. Song, R. Hu, Y.R. Xiang, J.J. He, Y.Y. Hao, J.R. Lian, B. Zhang, P.J. Zeng, J.L. Qu, Small 14, 1704007 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Ma, G. Yang, M. Qin, X. Zheng, H. Lei, C. Chen, Z. Chen, Y. Guo, H. Han, X. Zhao, G. Fang, Adv. Sci. 4, 1700031 (2017)CrossRefGoogle Scholar
  22. 22.
    L.F. Que, Z. Lan, W.X. Wu, J.H. Wu, J.M. Lin, M.L. Huang, J. Power Sour. 268, 670 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Tang, D. Jiao, L. Zhang, X.Z. Zhang, X.X. Xu, C. Yao, J.H. Wu, Z. Lan, Sol. Energy 161, 100 (2018)CrossRefGoogle Scholar
  24. 24.
    N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015)CrossRefGoogle Scholar
  25. 25.
    J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, S.I. Seok, Adv. Mater. 27, 4013 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashraful, M. Gratzel, L.Y. Han, Science 350, 944 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Wang, Y.T. Shi, B. Li, L. Zhao, W. Wang, X.Y. Wang, X.G. Bai, S.F. Wang, C. Hao, T.L. Ma, Adv. Mater. 28, 1891 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Zhong, B. Cai, X.L. Wang, Z. Yang, Y.D. Xing, S. Miao, W.H. Zhang, C. Li, Nano Energy 11, 409 (2015)CrossRefGoogle Scholar
  29. 29.
    J.X. Jiang, Q. Wang, Z.W. Jin, X.S. Zhang, J. Lei, H.J. Bin, Z.G. Zhang, Y.F. Li, S.Z. Liu, Adv. Energy Mater. 8, 1701757 (2018)CrossRefGoogle Scholar
  30. 30.
    D.Q. Bi, C.Y. Yi, J.S. Luo, J.D. Decoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Gratzel, Nat. Energy 1, 16142 (2016)CrossRefGoogle Scholar
  31. 31.
    X.J. Zheng, W. Yu, S. Priya, J. Energy Chem. 27, 748 (2018)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, X.Z. Zhang, X.X. Xu, J. Tang, J.H. Wu, Z. Lan, Energy Technol. 5, 1887 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Environment-Friendly Functional Materials, Fujian Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical Chemistry, College of Materials Science & EngineeringHuaqiao UniversityXiamenChina

Personalised recommendations