Advertisement

Pentagonal shaped ZnTiO3 ceramics for microwave dielectric applications

  • B. Santhosh Kumar
  • M. Manikandan
  • T. Mukilraj
  • N. Praveen Shankar
  • C. VenkateswaranEmail author
Article
  • 56 Downloads

Abstract

ZnTiO3—pervoskite based ceramic compound, synthesized by ball-milling assisted sintering yielded pentagonal shaped particles with heterogeneous size distribution. Dielectric loss (tan δ) plot as a function of frequency with various potential shows a decreasing trend. The imaginary part and electric modulus plot show a flat response in the microwave regime, at room temperature, which is due to dipole–dipole interaction. This property indicates the suitability of the prepared ZnTiO3 for microwave frequency applications.

Notes

Acknowledgements

The author B. Santhosh Kumar (BSK) thank DST—Inspire for its financial support in the form of fellowship (SRF-IF140582) and also Mr B. Soundararajan, technical officer for his kind help and support. The National center for nanoscience and nanotechnology, University of Madras is acknowledged for FE-SEM, HR-TEM and SAED facilities. M. Manikandan thank UGC-India for awarding (Dr. D.S. Kothari) Post-doctoral fellow.

References

  1. 1.
    H.T. Kim, J.D. Byun, Y. Kim, Mater. Res. Bull. 33, 975 (1998)CrossRefGoogle Scholar
  2. 2.
    Z.X. Yue, L.T. Li, J. Zhou, Z.L. Gui, J. Mater. Sci. 13, 415 (2002)Google Scholar
  3. 3.
    H.T. Kim, J.C. Hwang, J.H. Nam, B.H. Choi, M.T. Lanagan, J. Mater. Res. 18, 1067 (2003)CrossRefGoogle Scholar
  4. 4.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Nano 13, 1830005 (2018)CrossRefGoogle Scholar
  5. 5.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci. 28, 6544–6551 (2017)Google Scholar
  6. 6.
    C. Ye, Y. Wang, Y. Ye, J. Zhang, G.H. Li, J. Appl. Phys. 106, 033520 (2009)CrossRefGoogle Scholar
  7. 7.
    F.H. Dulin, D.E. Rase, J. Am. Ceram. Soc. 43, 125–131 (1960)CrossRefGoogle Scholar
  8. 8.
    O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, J. Am. Ceram. Soc. 70, c97–c98 (1987)Google Scholar
  9. 9.
    Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chai, Y.L. Chai, J. Cryst. Growth 243, 319–326 (2002)CrossRefGoogle Scholar
  10. 10.
    J.B. Goodenough, J.J. Stickler, Phys. Rev. 164, 768 (1967)CrossRefGoogle Scholar
  11. 11.
    R.P. Liferovich, R.H. Mitchell, Phys. Chem. Miner. 32, 442 (2005)CrossRefGoogle Scholar
  12. 12.
    P.K. Jain, D. Kumar, A. Kumar, D. Kaur, J. Optoelectron. Adv. Mater. 4, 299–304 (2010)Google Scholar
  13. 13.
    G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guom, H. Lv, Chem. Eng. J. 17, 31681–31689 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. Santhosh Kumar
    • 1
  • M. Manikandan
    • 1
    • 2
  • T. Mukilraj
    • 1
  • N. Praveen Shankar
    • 1
  • C. Venkateswaran
    • 1
    Email author
  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Centre for Nanoscience & TechnologyAnna UniversityChennaiIndia

Personalised recommendations