Advertisement

Fluorescent emission from a natural carbon matrix incorporating sodium

  • M. S. Swapna
  • H. V. Saritha Devi
  • G. AmbadasEmail author
  • S. SankararamanEmail author
Article
  • 22 Downloads

Abstract

The process of functionalization of metals in natural carbon matrices has become an important area of research due to its improved properties and applications. Carbon materials possessing photoluminescence (PL) properties find a wide range of applications in photonics. Among the various carbon materials available in nature, cellulose has critical importance since it is the most abundant and wide-spread biopolymer on Earth, and also, the important component in plants’ skeleton. In the present work, the functionalized carbonaceous material is prepared by the hydrothermal treatment of natural cellulosic source Aloe Vera and the metallic element sodium is properly incorporated into it by adding sodium borohydride to observe the fluorescence emission changes. The incorporation of metal ions in the carbon matrix leads to structural modifications and properties as evidenced by field emission scanning electron microscopy, Energy dispersive spectroscopy, X-ray dot mapping, X-ray Photoelectron spectroscopy, and X-ray diffraction analysis. The optical emission characteristics are studied using Photoluminescence spectroscopy, CIE plot, power spectrum, color purity, and quantum yield. The excitation wavelength dependent photoluminescence emission mechanism shown by the carbon–metal incorporated products obtained from the cellulosic raw materials makes them suitable for biomedical and biosensing applications because of the non-toxic and eco-friendly nature.

Notes

Acknowledgements

The authors are thankful to Department of Optoelectronics and Nanoscience and Nanotechnology, University of Kerala, Trivandrum, India for providing the laboratory facilities. The authors are also thankful to Ms. Sariga C Lal and Dr. G. Subodh, Department of Physics, University of Kerala for the technical support given in the Rietveld analysis.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    H.V. Saritha Devi, M.S. Swapna, R. Vimal, G. Ambadas, S. Sankararaman, Mater. Res. Express 5, 015603 (2018).  https://doi.org/10.1088/2053-1591/aa9db9 CrossRefGoogle Scholar
  2. 2.
    M. Isik, H. Sardon, D. Mecerreyes, Int. J. Mol. Sci. 15(7), 11922–11949 (2014).  https://doi.org/10.3390/ijms150711922 CrossRefGoogle Scholar
  3. 3.
    Y. Tian, M. Wu, R. Liu, D. Wang, X. Liu, W. Liu, L. Ma, T. Li, Y. Huang, J. Hazard. Mater. 185(1), 93–100 (2011).  https://doi.org/10.1016/j.jhazmat.2010.09.001 CrossRefGoogle Scholar
  4. 4.
    L.S. Silva, L.C.B. Lima, F.C. Silva, J.M.E. Matos, M.R.M.C. Santos, L.S.S. Júnior, K.S. Sousa, E.C. da Silva Filho, Chem. Eng. J. 218, 89–98 (2013).  https://doi.org/10.1016/j.cej.2012.11.118 CrossRefGoogle Scholar
  5. 5.
    D.A. Stevensa, J.R. Dahnb, J. Electrochem. Soc. 148(8), A803–A811 (2001).  https://doi.org/10.1149/1.1379565 CrossRefGoogle Scholar
  6. 6.
    J. Zhang, N. Jiang, Z. Dang, T.J. Elder, A.J. Ragauskas Cellulose 15, 489–496 (2008).  https://doi.org/10.1007/s10570-007-9193-1 CrossRefGoogle Scholar
  7. 7.
    S.P. Anthony, Chem. Plus Chem. 77, 518–531 (2012).  https://doi.org/10.1002/cplu.201200073 Google Scholar
  8. 8.
    B.-D. Lourdes, N.R. David, C.-C. Mercedes, Chem. Soc. Rev. 36, 993–1017 (2007).  https://doi.org/10.1039/b609548h CrossRefGoogle Scholar
  9. 9.
    W. Yifan, Z. Yanwu, Y. Shaoming, J. Changlong, RSC Adv. 7, 40973–40989 (2017).  https://doi.org/10.1039/C7RA07573A CrossRefGoogle Scholar
  10. 10.
    Q. Lin, Y. Zheng, G. Wang, X. Shi, T. Zhang, J. Yu, J. Sun, Int. J. Biol. Macromol. 73, 264–269 (2015).  https://doi.org/10.1016/j.ijbiomac.2014.11.011 CrossRefGoogle Scholar
  11. 11.
    L.S. Silva, L.C.B. Lima, F.J.L. Ferreira, M.S. Silva, J.A. Osajima, R.D.S. Bezerra, E.C. da Silva Filho, Open Chem. 13, 801–812 (2015).  https://doi.org/10.1515/chem-2015-0079 CrossRefGoogle Scholar
  12. 12.
    R.D.S. Bezerra, M.M.F. Silva, A.I.S. Morais, J.A. Osajima, M.R.M.C. Santos, C. Airoldi, E.C. da Silva Filho, Materials 7(12), 7907–7924 (2014).  https://doi.org/10.3390/ma7127907 CrossRefGoogle Scholar
  13. 13.
    M. Sevilla, A.B. Fuertes, Carbon 47, 2281–2289 (2009).  https://doi.org/10.1016/j.carbon.2009.04.026 CrossRefGoogle Scholar
  14. 14.
    L. Segal, J.J. Creel, A.E. Martin, C.M. Conrad, Text. Res. J. 29(10), 786–794 (1959).  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  15. 15.
    M.R. Sardar, A.A. Rashed, Md Anzan-Uz-Zaman, H. Samioul, H.M. Talukder, Md. Nasrul, T. Shahzadi, H.O.Q. Mahbubul, Mater. Sci. 33(3), 635–638 (2015).  https://doi.org/10.1515/msp-2015-0069.Google Scholar
  16. 16.
    W. Qiyang, G. Jinhua, W. Yixiang, C. Lingyun, C. Jie, Z. Lina, Carbohydr. Polym. 161, 235–243 (2017).  https://doi.org/10.1016/j.carbpol.2017.01.024 CrossRefGoogle Scholar
  17. 17.
    S.G. Morteza, M.B. Ashkan, H. Wooje, P. Hyung-Ho, J. Nanophotonics 10(2), 026028 (2016).  https://doi.org/10.1117/1.JNP.10.026028 CrossRefGoogle Scholar
  18. 18.
    M.S. Swapna, S. Sankararaman, J. Fluoresc. (2018).  https://doi.org/10.1007/s10895-018-2215-6 Google Scholar
  19. 19.
    M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 016203 (2018).  https://doi.org/10.1088/2053-1591/aaa656 CrossRefGoogle Scholar
  20. 20.
    A.D. Broadbent, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 3rd ed. by Encyclopedia of Spectroscopy and Spectrometry, pp. 321–327 (2017).  https://doi.org/10.1016/B978-0-12-803224-4.00014-5
  21. 21.
    Y.-F. Zhang, M. Halidan, B. Zhang, RSC Adv. 7, 2842–25850 (2017).  https://doi.org/10.1039/c6ra26684c CrossRefGoogle Scholar
  22. 22.
    L. Wenbo, Q. Xiaoyun, L. Sen, C. Guohui, Z. Yingwei, L. Yonglan, M.A. Abdullah, O.A.-Y. Abdulrahman, S. Xuping, Anal. Chem. 84, 5351–5357 (2012).  https://doi.org/10.1021/ac3007939 CrossRefGoogle Scholar
  23. 23.
    M. Li, X. Li, H.-N. Xiao, J. Tony, Chem. Open (2017).  https://doi.org/10.1002/open.201700133 Google Scholar
  24. 24.
    M.S. Swapna, H.V. Saritha Devi, S. Riya, G. Ambadas, S. Sankararaman, Mater. Res. Express 4(12), 125602 (2017).  https://doi.org/10.1088/2053-1591/aa9db9 CrossRefGoogle Scholar
  25. 25.
    H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, Appl. Phys. A 124, 297 (2018).  https://doi.org/10.1007/s00339-018-1733-z CrossRefGoogle Scholar
  26. 26.
    L.-S. Johansson, J.M. Campbell, Surf. Interface Anal. 36, 1018–1022 (2004).  https://doi.org/10.1002/sia.1827 CrossRefGoogle Scholar
  27. 27.
    A. Ganguly, S. Surbhi, P. Pagona, H. Jeremy, J. Phys. Chem. C115, 17009–17019 (2011).  https://doi.org/10.1021/jp203741y Google Scholar
  28. 28.
    Z. Bastl, S. Cerny, J. Alloy. Compd. 176, 159–165 (1991)CrossRefGoogle Scholar
  29. 29.
    S. Cheng, S. Panthapulakkal, M. Sain, A. Asiri, J. Appl. Polym. Sci. (2014).  https://doi.org/10.1002/APP.40592 Google Scholar
  30. 30.
    A. Patrik, K. Inkeri, S. Kirsi, Cellulose (2015).  https://doi.org/10.1007/s10570-016-0881-6 Google Scholar
  31. 31.
    M.S. Swapna, H.V. Saritha Devi, S. Sankararaman, Appl. Phys. A 124, 50 (2018).  https://doi.org/10.1007/s00339-017-1445-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Optoelectronics and Department of Nanoscience and NanotechnologyUniversity of KeralaTrivandrumIndia
  2. 2.Govt. Victoria CollegePalakkadIndia

Personalised recommendations