Advertisement

Influence of Nd2O3/SrO additives on sintering characteristics and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics

  • Liming Zhang
  • Yi Chang
  • Miao Xin
  • Luchao Ren
  • Xianfu Luo
  • Hongqing ZhouEmail author
Article
  • 40 Downloads

Abstract

The phase composition, microstructure, densification, microwave dielectric properties and sintering characteristics of (Zr0.8Sn0.2)TiO4 specimens doped with various Nd2O3/SrO additions, synthesized via a conventional solid-stated technology, were comprehensively studied. All samples depicted a single uniform (Zr0.8Sn0.2)TiO4 phase with orthorhombic crystalline structure without secondary phase. After adding Nd2O3/SrO additives, the sintering temperature of ZST ceramics was depressed to 1320 °C, while facilitating dielectric performances, as long as they were added in the appropriate amounts (0.3 wt% Nd2O3 + 0.45 wt% SrO). It has been found that when the ZST powders ground for 16 h sintered at 1320 °C for 4 h with 0.3 wt% Nd2O3 and 0.45 wt% SrO, an excellent microwave dielectric performances were generated for sintered ceramics: εr = 40.61, Q × f = 40700 GHz (f = 5.5 GHz) and τf = − 2.57 ppm °C−1.

Notes

Acknowledgements

The authors are grateful to the support of this work by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites.

References

  1. 1.
    H.C. Xiang, C.C. Li, C.Z. Yin et al., Ceram. Int. 44(5), 5817 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.J. Lin, S.F. Wang, B.C. Lai et al., J. Eur. Ceram. Soc. 37(8), 2825 (2017)CrossRefGoogle Scholar
  3. 3.
    F. Liang, M. Ni, W.Z. Lu et al., J. Alloys Compd. 568, 11 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Cheng, R.Z. Zuo, Y. Lv, Ceram. Int. 39(8), 8681 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Wu, D. Zhou, J. Guo et al., Mater. Lett. 65(17–18), 2680 (2011)CrossRefGoogle Scholar
  6. 6.
    Q.W. Liao, L.X. Li, X. Ren et al., J. Am. Ceram. Soc. 95(11), 3363 (2012)CrossRefGoogle Scholar
  7. 7.
    W.T. Xie, H.Q. Zhou, H.K. Zhu et al., J. Mater. Sci. Mater. Electron. 26(6), 3515 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Feteira, D. Iddles, T. Price et al., J. Am. Ceram. Soc. 94, 817 (2011)CrossRefGoogle Scholar
  9. 9.
    S.M. Olhero, A. Kaushal, J.M.F. Ferreira, RSC Adv. 4(89), 48734 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Vahabzadeh, M.A. Golozar, F. Ashrafizadeh, J. Alloys Compd. 509, 1129 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Pamu, G.L.N. Rao, K.V. Saravanan et al., Integr. Ferroelectr. 117, 118 (2010)CrossRefGoogle Scholar
  12. 12.
    C.L. Huang, C.S. Hsu, R.J. Lin, Mater. Res. Bull. 36, 1985 (2001)CrossRefGoogle Scholar
  13. 13.
    D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloys Compd. 475(1–2), 745 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Chen, L. Han, B.Y. Li et al., J. Mater. Sci. Mater. Electron. 28(13), 9542 (2017)CrossRefGoogle Scholar
  15. 15.
    S.X. Zhang, J.B. Li, H.Z. Zhai et al., Mater. Chem. Phys. 77(2), 470 (2002)CrossRefGoogle Scholar
  16. 16.
    Q.L. Sun, H.Q. Zhou, X.F. Luo et al., Ceram. Int. 42(10), 12306 (2016)CrossRefGoogle Scholar
  17. 17.
    X.R. Zhang, G.F. Fan, X.H. Wang et al., Ceram. Int. 42(7), 7962 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.S. Ahn, K.H. Yoon, E.S. Kim, J. Eur. Ceram. Soc. 23(14), 2519 (2003)CrossRefGoogle Scholar
  19. 19.
    G.A. Ravi, F. Azough, R. Freer et al., J. Am. Ceram. Soc. 90, 3947 (2007)Google Scholar
  20. 20.
    H.S. Zhu, Z.Y. Cui, C.Y. Shen, J. Mater. Sci. Mater. Electron. 27(1), 177 (2016)CrossRefGoogle Scholar
  21. 21.
    J.M. Li, Z.H. Tian, L.C. Yao et al., Ceram. Int. 43(17), 15793 (2017)CrossRefGoogle Scholar
  22. 22.
    L.J. Cheng, S.W. Jiang, Q. Ma et al., Scr. Mater. 115, 80 (2016)CrossRefGoogle Scholar
  23. 23.
    R.Z. Zuo, J. Zhang, J. Song et al., J. Am. Ceram. Soc. 101(2), 569 (2018)CrossRefGoogle Scholar
  24. 24.
    W.T. Xie, H.Q. Zhou, H.K. Zhu et al., Ceram. Int. 40(5), 6899 (2014)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, J. Appl. Phys. 73(1), 34 (1993)CrossRefGoogle Scholar
  26. 26.
    Y.J. Gu, C. Li, J.L. Huang et al., J. Eur. Ceram. Soc. 37(15), 4673 (2017)CrossRefGoogle Scholar
  27. 27.
    C.L. Huang, M.H. Weng, H.L. Chen, Mater. Chem. Phys. 71(1), 17 (2001)CrossRefGoogle Scholar
  28. 28.
    R.K. Bhuyan, T.S. Kumar, D. Goswami et al., J. Electroceram. 31(1–2), 48 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Takahashi, A. Kan, H. Ogawa, Mater. Chem. Phys. 200, 257 (2017)CrossRefGoogle Scholar
  30. 30.
    L.C. Ren, X.F. Luo, J. Am. Ceram. Soc. 101(9), 3874 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Laishram, O.P. Thakur, J. Mater. Sci. Mater. Electron. 24(9), 3504 (2013)CrossRefGoogle Scholar
  32. 32.
    C.Y. Tsao, K.C. Feng, W.H. Tuan, Ceram. Int. 43, S312 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjingChina

Personalised recommendations