Advertisement

The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties

  • Tingting Su
  • Biao ZhaoEmail author
  • Fengqi Han
  • Bingbing FanEmail author
  • Rui Zhang
Article
  • 34 Downloads

Abstract

Rod-like α-MnO2 and β-MnO2 were obtained successfully by hydrothermal method under different temperatures. The as-prepared samples have been characterized by XRD, SEM, TG, TEM and HRTEM. The β-MnO2 was obtained under the condition of 150 °C and 220 °C, and the crystallinity of 220 °C would be better, the α-MnO2 was synthesize at 180 °C. The thermal stabilities of manganese oxide were affected by their crystal phases. The microwave absorption properties of rod-like α-MnO2 and β-MnO2 were studied at 2.0–18.0 GHz, and β-MnO2 show much better absorption properties than α-MnO2. The β-MnO2 prepared under the condition of 220 °C presents the optimal microwave absorption properties with the RL values of − 25.5 dB at 14.7 GHz, a thickness of 1.5 mm and an effective bandwidth of 5.0 GHz (13–18.0 GHz). These results indicate that MnO2 were dielectric loss materials, their absorption properties were influenced by the crystal phase, morphological size and crystallinity significantly. Special rod-like morphology and good crystallinity lead to superior impedance matching and moderate attenuation constant, α, and eventually enhanced microwave absorption.

Notes

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (NSFC) (Grant No. 51602287), China Postdoctoral Science Foundation Grant (Grant No. 2016M602266) and Natural Science Research Project of Henan Educational Committee (Grant No. 17A430006). The authors would like to thank for the support.

References

  1. 1.
    L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 282–284 (2005)Google Scholar
  2. 2.
    W.T. Wang, Q.L. Li, C.B. Chang, Synth. Met. 161, 44–50 (2011)CrossRefGoogle Scholar
  3. 3.
    F.S. Wen, F. Zhang, Z. Liu, J. Phys. Chem. C 115, 14025–14030 (2011)CrossRefGoogle Scholar
  4. 4.
    C.W. Qiang, J.C. Xu, Z.Q. Zhang, L.L. Tian, S.T. Xiao, Y. Liu, P. Xu, J. Alloys Compd. 506, 93–97 (2010)CrossRefGoogle Scholar
  5. 5.
    M.G. Chen, Y. Zhu, H.M. Kou, H. Xu, J.K. Guo, Mater. Des. 32, 3013–3016 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Z.Q. Zhang, S.T. Xiao, C.W. Qiang, L.L. Tian, J.C. Xu, Appl. Surf. Sci. 257, 7678–7683 (2011)CrossRefGoogle Scholar
  7. 7.
    X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Appl. Phys. Lett. 92, 301 (2008)Google Scholar
  8. 8.
    P. Xu, X.J. Han, C. Wang, D.H. Zhou, Z.S. Lv, A.H. Wen, X.H. Wang, B. Zhang, J. Phys. Chem. B 112, 10443–10448 (2008)CrossRefGoogle Scholar
  9. 9.
    C.K. Cui, Y.C. Du, T.H. Li, X.Y. Zheng, X.H. Wang, X.J. Han, P. Xu, J. Phys. Chem. B 116, 9523–9531 (2012)CrossRefGoogle Scholar
  10. 10.
    G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Chem. Mater. 23, 1587–1593 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Zhao, K. Jia, J.J. Wei, J.X. Pu, X.B. Liu, Mater. Lett. 64, 457–459 (2010)CrossRefGoogle Scholar
  12. 12.
    S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, D.Y. He, J. Phys. D 42, 055004 (2009)CrossRefGoogle Scholar
  13. 13.
    S.B. Ni, X.L. Sun, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He, Mater. Chem. Phys. 124, 353–358 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloys Compd. 489, 297–303 (2010)CrossRefGoogle Scholar
  15. 15.
    C. Singh, S.B. Narang, I.S. Hudiara, K. Sudheendran, K.C.J. Raju, J. Magn Magn Mater. 320, 1657–1665 (2008)CrossRefGoogle Scholar
  16. 16.
    P. Yuan, T. Xia, J. Zhai, J.F. Chen, Mater. Sci. Eng. B 176, 163–166 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Maqsood, K. Khan, J. Alloys Compd. 509, 3393–3397 (2011)CrossRefGoogle Scholar
  18. 18.
    W. Xiao, D.L. Wang, X.W. Lou, J. Phys. Chem. C 114, 1430–1434 (2009)Google Scholar
  19. 19.
    V.B. Boppana, F. Jiao, Chem. Commun. 47, 8973–8975 (2011)CrossRefGoogle Scholar
  20. 20.
    M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li, J. Phys. Chem. C 112, 19141–19147 (2007)CrossRefGoogle Scholar
  21. 21.
    X.X. He, M.Y. Yang, P. Ni, Y. Li, Z.H. Liu, Colloid Surf. A 363, 64–70 (2010)CrossRefGoogle Scholar
  22. 22.
    O. Ghodbane, J.L. Pascal, F. Favier, ACS Appl. Mater. Interfaces 1, 1130–1139 (2009)CrossRefGoogle Scholar
  23. 23.
    A.J. Roberts, R.C.T. Slade, J. Mater. Chem. 20, 3221–3226 (2010)CrossRefGoogle Scholar
  24. 24.
    H.Q. Wang, G.F. Yang, Q.Y. Li, X.X. Zhong, F.P. Wang, Z.S. Li, Y.H. Li, New J. Chem. 35, 469–475 (2011)CrossRefGoogle Scholar
  25. 25.
    J.H. Zeng, Y.F. Wang, Y. Yang, J. Zhang, J. Mater. Chem. 20, 10915–10918 (2010)CrossRefGoogle Scholar
  26. 26.
    J.Z. Zhao, Z.L. Tao, J. Liang, J. Chen, Cryst. Growth Des. 8, 2799–2805 (2008)CrossRefGoogle Scholar
  27. 27.
    Y.P. Duan, Y. Yang, M. He, S.H. Liu, X.D. Cui, H.F. Chen, J. Phys. D 41, 1854–1862 (2008)CrossRefGoogle Scholar
  28. 28.
    Y.P. Duan, Z. Jia, J. Hui, S.H. Liu, J. Solid State Chem. 184, 1165–1171 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Hui, Y.P. Duan, L. Zhuo, Z. Jia, S.H. Liu, Phys. B 407, 971–977 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Zhang, Y.P. Duan, S.Q. Li, X.G. Li, S.H. Liu, J. Solid State Chem. 183, 1490–1495 (2010)CrossRefGoogle Scholar
  31. 31.
    Y.P. Duan, H. Ma, X.G. Li, S.H. Liu, Z.J. Ji, Phys. B 405, 1826–1831 (2010)CrossRefGoogle Scholar
  32. 32.
    J.J. Hu, Y.P. Duan, J. Zhang, J. Hui, S.H. Liu, W.P. Li, Phys. B 406, 1950–1955 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Zhou, X. Zhang, J.M. Wei, S.L. Zhao, L. Wang, B.X. Feng, J. Phys. Chem. C 115, 1398–1402 (2013)CrossRefGoogle Scholar
  34. 34.
    D. Yan, S. Cheng, R.F. Zhuo, J.T. Chen, J.J. Feng, H.T. Feng, H.J. Li, Z.G. Wu, J.W. Wang, P.X. Yan, Nanotechnology 20, 105706 (2009)CrossRefGoogle Scholar
  35. 35.
    H.T. Guan, C. Gang, S.B. Zhang, Y.D. Wang, Mater. Chem. Phys. 124, 639–645 (2010)CrossRefGoogle Scholar
  36. 36.
    B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, R. Zhang, Phys. Chem. Chem. Phys. 17, 6044–6052 (2015)CrossRefGoogle Scholar
  37. 37.
    H.J. Kim, J.B. Lee, Y.M. Kim, M.H. Jung, Z. Jaglicic, P. Umek, J. Dolinsek, Nanoscale Res. Lett. 2, 81–86 (2007)CrossRefGoogle Scholar
  38. 38.
    R. Giovanoli, Thermochim. Acta 234, 303–313 (1994)CrossRefGoogle Scholar
  39. 39.
    Q.W. Li, G.A. Luo, J. Li, X. Xia, J. Mater. Process. Tech 137, 25–29 (2003)CrossRefGoogle Scholar
  40. 40.
    X. Zhang, W.S. Yang, J.J. Yang, D.G. Evans, J. Cryst. Growth 310, 716–722 (2008)CrossRefGoogle Scholar
  41. 41.
    X. Wang, Y.D. Li, Chem. Commun. 7, 764–765 (2002)CrossRefGoogle Scholar
  42. 42.
    M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, W.B. Wang, K.K. Su, Q.Y. Zhang, J. Alloys Compd. 693, 432–439 (2017)CrossRefGoogle Scholar
  43. 43.
    H.L. Lv, X.H. Liang, Y. Cheng, H.Q. Zhang, D.M. Tang, B.S. Zhang, G.B. Ji, Y.W. Du, ACS Appl. Mater. Interfaces 7, 4744–4750 (2015)CrossRefGoogle Scholar
  44. 44.
    B. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, S. Gang, B.B. Fan, Z.Y. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8, 28917–28925 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Xia, Battery Bimon. 34, 411–414 (2004)Google Scholar
  46. 46.
    H.T. Guan, G. Chen, J. Zhu, Y.D. Wang, J. Alloys Compd. 507, 126–132 (2010)CrossRefGoogle Scholar
  47. 47.
    B. Quan, X.H. Liang, G.B. Ji, J. Lv, S.S. Dai, G.Y. Xu, Y.W. Du, Carbon 129, 310–320 (2018)CrossRefGoogle Scholar
  48. 48.
    H.T. Guan, J.B. Xie, G. Chen, Y.D. Wang, Mater. Chem. Phys. 143, 1061–1068 (2014)CrossRefGoogle Scholar
  49. 49.
    B. Zhao, J.W. Liu, X.Q. Guo, W.Y. Zhao, L.Y. Liang, C. Ma, R. Zhang, Phys. Chem. Chem. Phys. 19, 9128–9136 (2017)CrossRefGoogle Scholar
  50. 50.
    B. Zhao, X.Q. Guo, Y.Y. Zhou, T.T. Su, C. Ma, R. Zhang, CrystEngComm 19, 2178–2186 (2017)CrossRefGoogle Scholar
  51. 51.
    J. Yang, J. Zhang, J.W. Liu, C.Y. Liang, M. Wang, M.M. Liu, R.C. Che, ACS Appl. Mater. Interfaces 5, 7146–7151 (2013)CrossRefGoogle Scholar
  52. 52.
    G.S. Wang, L.Z. Nie, S.H. Yu, RSC Adv. 2, 6216–6221 (2012)CrossRefGoogle Scholar
  53. 53.
    Q.M. Su, G.H. Du, J. Zhang, Y.J. Zhong, B.S. Xu, Y.H. Yang, S. Neupane, W.Z. Li, ACS Nano 8, 3620–3627 (2014)CrossRefGoogle Scholar
  54. 54.
    G.Z. Wang, X.G. Peng, L. Yu, G.P. Wan, S.W. Lin, Q. Yong, J. Mater. Chem. A 3, 2734–2740 (2015)CrossRefGoogle Scholar
  55. 55.
    B. Zhao, W.Y. Zhao, G. Shao, B.B. Fan, R. Zhang, ACS Appl. Mater. Interfaces 7, 12951–12960 (2015)CrossRefGoogle Scholar
  56. 56.
    Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji, H.Q. Zhao, J.M. Cao, Y.W. Du, Carbon 127, 643–652 (2018)CrossRefGoogle Scholar
  57. 57.
    B. Quan, X.H. Liang, G.B. Ji, J.N. Ma, P.Y. Ouyang, H. Gong, G.Y. Xu, Y.W. Du, ACS Appl. Mater. Interfaces 9, 9964–9974 (2017)CrossRefGoogle Scholar
  58. 58.
    B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu, J.N. Ma, Y.N. Zhang, D.R. Li, G.Y. Xu, J. Alloys Compd. 728, 1065–1075 (2017)CrossRefGoogle Scholar
  59. 59.
    H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C. Xu, Adv. Mater. 30, 1706343 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Mechatronics EngineeringZhengzhou University of AeronauticsZhengzhouChina
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations