Advertisement

Effect of rare element Ce doping concentration on resistive switching of HfOx film

  • Tingting GuoEmail author
  • Tingting Tan
  • Li Duan
  • Zhihui Zhang
Article
  • 52 Downloads

Abstract

The switching characteristics of rare element Ce-doped HfOx films were investigated. The effect of Ce doping on oxygen defects was analyzed by X-ray photoelectron spectroscopy (XPS) and first-principle calculations. The variations of valence state of Ce and oxygen vacancies with the increase of Ce doping concentration were demonstrated. Although Ce doping increased dopants-induced oxygen vacancies in HfOx film, the density of oxygen vacancies decreased as the doping concentration increased. Besides, the introduction of Ce dopants enlarged the difference in electronegativity of Hf and O which made it harder for O to escape from HfOx film under voltage. Hence the switching behaviors of Ce-doped HfOx film were affected by multiple factors and can be effectively improved with an appropriate doping concentration (4.3%). A physical model based on the formation and rupture of conductive filaments was proposed to clarify the switching behavior of Ce-doped HfOx samples.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51802025), the Fundamental Research Funds for the Central Universities (Nos. 300102318303, 300102318103), the Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201844).

References

  1. 1.
    J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, Y.J. Kwon, X. Shao, C.S. Hwang, Adv. Mater. 27, 3811 (2015)CrossRefGoogle Scholar
  2. 2.
    D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016)CrossRefGoogle Scholar
  3. 3.
    Z. Wu, J. Zhu, X. Liu, J. Mater. Sci.: Mater. Electron. 28, 10625 (2017)Google Scholar
  4. 4.
    A. Harada, H. Yamaoka, R. Ogata, K. Watanabe, K. Kinoshita, S. Kishida, T. Nokami, T. Itoh, J. Mater. Chem. C 3, 6966 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Ma, X. Tang, H. Zhang, Z. Zhong, X. Li, J. Li, H. Su, J. Mater. Sci. 52, 238 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Akbari, M. Kim, D. Kim, J.-S. Lee, RSC Adv. 7, 16704 (2017)CrossRefGoogle Scholar
  7. 7.
    C. Hu, Q. Wang, S. Bai, M. Xu, D. He, D. Lyu, J. Qi, Appl. Phys. Lett. 110, 073501 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Dou, K. Kakushima, P. Ahmet, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, H. Iwai, Microelectron. Reliab. 52, 688 (2012)CrossRefGoogle Scholar
  9. 9.
    K.X. Shi, H.Y. Xu, Z.Q. Wang, X.N. Zhao, W.Z. Liu, J.G. Ma, Y.C. Liu, Appl. Phys. Lett. 111, 223505 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Zhang, V. Zima, T. Mikysek, V. Podzemna, P. Rozsival, T. Wagner, J. Mater. Sci.: Mater. Electron. (2018)  https://doi.org/10.1007/s10854-018-9778-5 Google Scholar
  11. 11.
    M.S. Lee, S. Choi, C.H. An, H. Kim, Appl. Phys. Lett. 100, 143504 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang, in Symposium on VLSI technology, pp. 30–31, 2009Google Scholar
  13. 13.
    L. Gao, Y. Li, Q. Li, Z. Song, F. Ma, Nanotechnology 28, 215201 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Guo, T. Tan, Z. Liu, B. Liu, J. Alloy. Compd. 686, 669 (2016)CrossRefGoogle Scholar
  15. 15.
    A.M. Rana, T. Akbar, M. Ismail, E. Ahmad, F. Hussain, I. Talib, M. Imran, K. Mehmood, K. Iqbal, M.Y. Nadeem, Sci. Rep. 7, 39539 (2017)CrossRefGoogle Scholar
  16. 16.
    W.H. Kim, M.K. Kim, I.K. Oh, W.J. Maeng, T. Cheon, S.H. Kim, A. Noori, D. Thompson, S. Chu, H. Kim, J. Am. Ceram. Soc. 97, 1164 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Varshney, A. Sharma, K.H. Chae, S. Kumar, S.O. Won, J. Phys. Chem. Solids 119, 242 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Burke, J.P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  19. 19.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  20. 20.
    P.J.D. Lindan, J. Phys: Condens. Matter 14, 2717 (2002)Google Scholar
  21. 21.
    S.Q. Wang, J.W. Mayer, J. Appl. Phys. 64, 4711 (1988)CrossRefGoogle Scholar
  22. 22.
    T.M. Pan, C.H. Lu, IEEE Trans. Electron Devices 59, 956 (2012)CrossRefGoogle Scholar
  23. 23.
    H.Y. Zhu, T. Hirata, J. Mater. Sci. Lett. 12, 749 (1993)CrossRefGoogle Scholar
  24. 24.
    L. Qiu, F. Liu, L. Zhao, Y. Ma, J. Yao, Appl. Surf. Sci. 252, 4931 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Pfau, K.D. Schierbaum, Surf. Sci. 321, 71 (1994)CrossRefGoogle Scholar
  26. 26.
    M. Kouda, N. Umezawa, K. Kakushima, P. Ahmet, T. Chikyow, K. Yamada, H. Iwai, in Symposium on VLSI technology, p. 200 (2009)Google Scholar
  27. 27.
    J. Shin, I. Kim, K.P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, J. Appl. Phys. 109, 033712 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Ji, L. Wang, F. Wei, H. Tu, J. Du, Semicond. Sci. Technol. 25, 258 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChang’an UniversityXi’anChina
  2. 2.State Key Lab of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations