Advertisement

Effect of Y2O3, Nd2O3 or Sm2O3 on the microstructure and electrical properties of ZnVMnNbO varistor ceramics

  • Ming ZhaoEmail author
  • Xue Li
  • Tianyu Li
  • Yu Shi
  • Baowei Li
Article
  • 34 Downloads

Abstract

This study addresses the different effect of doping 0.05 mol% Y2O3, Nd2O3 or Sm2O3 on the microstructure and nonlinear electrical properties of the ZnO–V2O5–MnCO3–Nb2O5 (ZnVMnNbO) ceramic sintered at 930 °C for 3 h using XRD, FESEM, EDS and I–V measurements. The results show the density and the microstructure homogeneity of the ZnVMnNbO ceramic increase with the addition of Y2O3, Nd2O3 or Sm2O3. Meanwhile, REVO4 (RE=Y, Nd or Sm) forms as the new secondary crystalline phase at ZnO grain nodal areas of the ZnVMnNbO ceramic which originally has Zn3(VO4)2, ZnMn2O4 and ZnV2O4 as the secondary phases. The addition of Y2O3 or Sm2O3 can effectively improve the nonlinearity coefficient of the ZnVMnNbO varistor ceramic from 33.6 of the RE-free sample to near 37 by increasing interface state density. In the contrast, Nd2O3 considerably reduces α to 25.9 by decreasing both barrier height (ΦB) and depletion layer width (ω).

Notes

Acknowledgements

This work is supported by the Inner Mongolia Grassland Elites (Cao Yan Ying Cai) Innovation Group Fund. Support from Inner Mongolia Science & Technology Innovation Team of Integrated Exploitation of Bayan Obo Mine Multi-metal Resource (IMUST01) is also fully acknowledged by all authors of the current study.

References

  1. 1.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 3 (1999)Google Scholar
  2. 2.
    K.O. Magnusson, S. Wiklund, J. Appl. Phys. 76, 11 (1994)CrossRefGoogle Scholar
  3. 3.
    P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 15, 7 (1995)CrossRefGoogle Scholar
  4. 4.
    R.A. Winston, J.F. Cordaro, J. Appl. Phys. 68, 12 (1990)CrossRefGoogle Scholar
  5. 5.
    F. Stucki, F. Greuter, Appl. Phys. Lett. 57, 5 (1990)CrossRefGoogle Scholar
  6. 6.
    D. Xu, X. Cheng, G. Zhao, J. Yang, L. Shi, Ceram. Int. 37, 3 (2011)Google Scholar
  7. 7.
    N. Raghu, T. Kutty, Appl. Phys. Lett. 60, 1 (1992)CrossRefGoogle Scholar
  8. 8.
    Y. Yano, Y. Takai, H. Morooka, J. Mater. Res. 9, 1 (1994)CrossRefGoogle Scholar
  9. 9.
    S. Yang, D. Zhu, J. Mater. Sci. 29, 4 (2018)Google Scholar
  10. 10.
    M. Lei, S. Li, X. Jiao, J. Li, M.A. Alim, J. Phys. D 37, 5 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Wang, Q. Tang, C. Yao, Ceram. Int. 36, 3 (2010)Google Scholar
  12. 12.
    J. Zhu, Q. Liu, J. Wang, Y. Zhou, W. Ye, F. Wang, J. Mater. Sci. 27, 1 (2016)Google Scholar
  13. 13.
    G. Chen, J. Li, Y. Yang, C. Yuan, C. Zhou, Mater. Res. Bull. 50, 3786 (2014)Google Scholar
  14. 14.
    C. Yang, D. Zhu, T. Zeng, L. Jiao, J. Electron. Mater. 44, 8 (2015)Google Scholar
  15. 15.
    T. Kato, Y. Takada, J. Electroceram. 31, 1–2 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Zhao, X. Li, Y. Shi, T. Li, B. Li, Ceram. Int. 44, 6 (2018)Google Scholar
  17. 17.
    C.W. Nahm, J. Rare Earth 32, 1 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Roy, D. Das, T.K. Roy, J. Alloy. Compd. 749, 15 (2018)CrossRefGoogle Scholar
  19. 19.
    C.W. Nahm, J. Alloy. Compd. 578, 25 (2013)CrossRefGoogle Scholar
  20. 20.
    C.W. Nahm, Ceram. Int. 41, 3 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Nahm, J. Am. Ceram. Soc. 94, 10 (2011)Google Scholar
  22. 22.
    C.W. Nahm, J. Mater. Sci. 22, 11 (2011)Google Scholar
  23. 23.
    N.H. Isa, A. Zakaria, R.S. Azis, W.R.W. Abdullah, Dig. J. Nanomater. Biosci. 12, 3 (2017)Google Scholar
  24. 24.
    C.W. Nahm, J. Mater. Sci. 24, 12 (2013)Google Scholar
  25. 25.
    C.W. Nahm, J. Mater. Sci. 24, 1 (2013)Google Scholar
  26. 26.
    R. Guo, L. Fang, H. Zhou, X. Chen, D. Chu, B. Chan, Y. Qin, J. Mater. Sci. 8, 24 (2013)Google Scholar
  27. 27.
    C. Nahm, Mater. Sci. Semicond. Proc. 16, 5 (2013)Google Scholar
  28. 28.
    C. Nahm, Mater. Sci. Semicond. Proc. 16, 3 (2013)Google Scholar
  29. 29.
    C.W. Nahm, J. Mater. Sci. 26, 6 (2015)Google Scholar
  30. 30.
    C.W. Nahm, J. Mater. Sci. 24, 8 (2013)Google Scholar
  31. 31.
    C.W. Nahm, J. Mater. Sci. 29, 4 (2018)Google Scholar
  32. 32.
    H.H. Hng, P.L. Chan, Ceram. Int. 30, 7 (2004)CrossRefGoogle Scholar
  33. 33.
    T.K. Gupta, W.G. Carlson, J. Mater. Sci. 20, 10 (1985)Google Scholar
  34. 34.
    C.W. Nahm, Ceram. Int. 35, 541 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal ResourcesInner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China

Personalised recommendations