Influence of selenium doping on structural, morphological and thermoelectric properties of nanocrystalline PbTe100−xSex thin films

  • L. KungumadeviEmail author
  • R. Sathyamoorthy
  • G. Hema Chandra


Nanocrystalline PbTe100−xSex thin films are prepared using an integrated physical–chemical approach by evaporating chemically synthesized PbTe nanopowders on glass substrates. All the deposited films exhibiting the face centered cubic structure with the crystallite orientation along (200) direction. The crystallite size of the films is within the range 10–26 nm. XRD analysis indicated that the lattice constants of PbTe100−xSex thin films decreased with the increasing amount of Se. Raman spectra of these PbTe100−xSex thin films show a wavelength shift in the peak position as compared with PbTe due to the addition of Se in PbTe. Electrical resistivity study reveals that the samples are exhibiting semiconducting nature. The value of the Seebeck coefficient of PbTe100−xSex thin films with x = 0, 6, 10 and 15 is 788, 1101, 921 and 780 µV/K respectively which is high compared to the bulk (265 µV/K). Observed results imply that the thermoelectric properties of PbTe gets enhanced due to doping of Se.



One of the authors (L. Kungumadevi) would like to acknowledge the Council of Scientific and Industrial Research (CSIR), India for awarding Senior Research Fellowship (SRF) to carry out this work.


  1. 1.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, Adv. Mater. 19, 1043 (2007)CrossRefGoogle Scholar
  2. 2.
    Z.H. Dughaish, Physica B 322, 205 (2002)CrossRefGoogle Scholar
  3. 3.
    G.L. Bennu, D.M. Rowe (eds.) CRC Hand Book of Thermoelectrics, (CRC Press, New York, 1995)Google Scholar
  4. 4.
    J.E. Murphy, C. Mathew, B.G. Andew, PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241 (2006)CrossRefGoogle Scholar
  5. 5.
    E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, A.Yu. Sipatov, V.V. Volubnev, M.S. Dresselhaus, Appl. Phys. Lett. 78, 1661 (2001)CrossRefGoogle Scholar
  6. 6.
    A. Kosuga, M. Uno, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 387, 52 (2005)CrossRefGoogle Scholar
  7. 7.
    Y.M. Lin, M.S. Dresselhaus, Phys. Rev. B 68, 075304 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Beyer, J. Nurnus, H. Böttner, A. Lambrecht, T. Roch, G. Bauer, Appl. Phys. Lett. 80, 1216 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Zhang, Q. Zhang, L. Wang, J. Alloys Compd. 725, 563 (2017)CrossRefGoogle Scholar
  10. 10.
    M.S. Kim, W.J. Lee, K.H. Cho, ACS Nano 10, 7197 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Fan, T. Su, H. Li, S. Li, M. Hu, J. Alloys Compd. (2016). Google Scholar
  12. 12.
    T. Su, S. Li, Y. Zheng, J. Phys. Chem. Solids 74, 913 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Hmood, A. kadhi, H.A. Hasan, Superlattices Microstruct. 51, 825 (2012)CrossRefGoogle Scholar
  14. 14.
    J.Q. Li, S.P. Li, Q.B. Wang, L. Wang, J. Alloys Compd. 509, 4516 (2011)CrossRefGoogle Scholar
  15. 15.
    T.C. Harman, P.J. Taylor, D.L. Spears, J. Electron. Mater. 29(1), L1 (2000)CrossRefGoogle Scholar
  16. 16.
    D.W. Ma, C. Cheng, J. Alloys Compd. 509, 6595 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Erk, A. Berger, J.H. Wendorff, S. Schlecht, Dalton Trans. 39, 11248 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Ji, W. Jian, J. Fang, J. Am. Chem. Soc. 125, 8448 (2003)CrossRefGoogle Scholar
  19. 19.
    J.R. Ferraro, Appl. Spectrosc. 29, 418 (1975)CrossRefGoogle Scholar
  20. 20.
    T. Shimada, K.L.I. Kobayashi, Y. Katayama, K.F. Komatsubara, Phys. Rev. Lett. 39, 143 (1977)CrossRefGoogle Scholar
  21. 21.
    J.G. Shapter, M.H. Brooker, W.M. Skinner, Inter. J. Miner. Process. 60, 199 (2000)CrossRefGoogle Scholar
  22. 22.
    H. Wu, C. Cao, J. Si, T. Xu, H. Zhang, H. Wu, J. Appl. Phys. 101, 103505 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Shang, W. Yao, Y. Zhu, N. Wu, Appl. Catal. A 257, 25 (2004)CrossRefGoogle Scholar
  24. 24.
    V.F. Markov, N.A. Tretyakova, L.N. Maskaeva, V.M. Bakanov, Thin Solid Films 520, 5227 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.I. Ravich, B.A. Efimiva, I.A. Smirov, in Semiconducting Lead Chalcogenides ed. by L.S. Stibans (Plenum, New York, 1970)CrossRefGoogle Scholar
  26. 26.
    A.J. Sievers, in Far-Infrared Spectroscopy, ed. by K.D. Moller, W.G. Rothschild (Wiley, New York, 1971), pp. 525Google Scholar
  27. 27.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  28. 28.
    H. Fan, T. Su, H. Li, J. Alloys Compd. (2016).
  29. 29.
    T. Su, S. Li, S. Zheng, J. Phys. Chem. Solids 74, 913 (2013)CrossRefGoogle Scholar
  30. 30.
    M.M. Ibrahim, S.A. Saleh, E.M.M. Ibrahim, J. Alloys Compd. 452, 200 (2008)CrossRefGoogle Scholar
  31. 31.
    B. Paul, P. Banerji, Nanosci. Nanotechnol. Lett. 1, 208 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Hmood, A. Kadhim, H. Abu Hassan, Superlattices Microstruct. 51, 825 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Takashiri, T. Borca-Tasciuc, A. Jacquot, J. Appl. Phys. 100, 054315 (2006)CrossRefGoogle Scholar
  34. 34.
    J.P. Heremans, V. Jovovic, E. Toberer, Science 321, 554 (2008)CrossRefGoogle Scholar
  35. 35.
    J.P. Heremans, Acta Phys. Pol. A 108(4), 609 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMother Teresa Women’s UniversityKodaikanalIndia
  2. 2.PG and Research Department of PhysicsKongunadu Arts and Science CollegeCoimbatoreIndia
  3. 3.Department of Applied PhysicsVNITNagpurIndia

Personalised recommendations