Advertisement

Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight

  • Adnan KhanEmail author
  • Syed Jamal Shah
  • Karishma Mehmood
  • Awais
  • Nauman Ali
  • Hamayun Khan
Article
  • 102 Downloads

Abstract

Photocatalytic degradation is an effective method for toxic dye decontamination of domestic wastewater and industrial effluents. For this purpose, copper sulphide nanoparticles-chitosan beads (CuS-CB) were synthesized. The synthesis of beads were confirmed using FTIR spectroscopy. The size of CuS nanoparticles were 60 nm analysed using XRD technique. The EDX technique confirms presence of CuS nanoparticles in chitosan beads (CB). SEM images showed smooth surface morphology with average bead size of 735 µm. The band gap energy of the catalyst was calculated in the visible region using Tauc relation and found to be 2.1 eV. The CuS-CB was applied for photodegradation of malachite green (MG) dye. The removal efficiency of the catalytic beads obtained was 95% (50 ppm) under the optimized conditions in the sunlight. The photocatalytic degradation of MG dye under solar light has shown enhanced degradation than UV region. Pseudo first kinetics fitted well to photocatalytic degradation of MG with rate constant of 3.3 × 10−2 min−1. The photocatalyst give excellent results after recycling and regeneration up to five times for the degradation of MG dye.

References

  1. 1.
    S. Srivastava, R. Sinha, D. Roy, Aquat. Toxicol. 66, 319 (2004)CrossRefGoogle Scholar
  2. 2.
    W. Cheng, S.G. Wang, L. Lu, W.X. Gong, X.W. Liu, B.Y. Gao, H.Y. Zhang, Biochem. Eng. J. 39, 538 (2008)CrossRefGoogle Scholar
  3. 3.
    K.V. Rao, Toxicol. Lett. 81, 107 (1995)CrossRefGoogle Scholar
  4. 4.
    D.J. Alderman, R.S.J. Clifton-Hadley, J. Fish Dis. 16, 297 (1993)CrossRefGoogle Scholar
  5. 5.
    S.J. Culp, F.A. Beland, R.H. Heflich et al., Mutat. Res. 55, 506–507 (2011)Google Scholar
  6. 6.
    T. Myllykangas, T. Nissinen, A. Hiroden, P. Rantakokko, T. Vartiainen, Ozone 27, 19–26 (2005)CrossRefGoogle Scholar
  7. 7.
    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Cataly. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  8. 8.
    W.W. Li, H.Q. Yu, Z. He, Energy Environ. Sci. 7, 911–924 (2014)CrossRefGoogle Scholar
  9. 9.
    M.M.R. Khan, M. Ray, A.K. Guha, Bioresour. Technol. 102, 2394–2399 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Hao, K.W. Jayawardana, X. Chen, M. Yan, ACS Appl. Mater. Interface 7, 1040–1045 (2015)CrossRefGoogle Scholar
  11. 11.
    A.G.S. Prado, L.L. Costa, J. Hazard. Mater. 169, 297 (2009)CrossRefGoogle Scholar
  12. 12.
    L.A. Perez-Estrada, A. Aguera, M.D. Hernando, S. Malato, A.R. Fernandez-Alba, Chemosphere 70, 2068–2075 (2008)CrossRefGoogle Scholar
  13. 13.
    A.K. Jana, J. Photochem. Photobiol. A 132, 1–17 (2000)CrossRefGoogle Scholar
  14. 14.
    C.C. Chen, C.S. Lu, Y.C. Chung, J.L. Jan, J. Hazard. Mater. 141, 520–528 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Afshar, H.S. Jahromi, N. Jafari, Z. Ahmadi, M. Hakamizadeh, Sci. Iran. 18, 772–779 (2011)CrossRefGoogle Scholar
  16. 16.
    A.N. Ozogu, F.A. Aisien, U.U. Udiba, N.C. Chukwurah, Am. J. Environ. Eng. Sci. 3, 26–32 (2016)Google Scholar
  17. 17.
    C. Hariharan, Appl. Catal. A 304, 55–61 (2006)CrossRefGoogle Scholar
  18. 18.
    E.A. Meulenkamp, J. Phys. Chem. 102, 5566–5572 (1998)CrossRefGoogle Scholar
  19. 19.
    K.S. Babu, A.R. Reddy, K.V. Reddy, Mater. Res. Bull. 49, 537–543 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Córdova, H. Gómez, R. Schrebler, P. Cury, M. Orellana, P. Grez, D. Leinen, J.R. Ramos-Barrado, R.D. Río, Langmuir 18, 8647–8654 (2002)CrossRefGoogle Scholar
  21. 21.
    W. Lim, C. Wong, S. Ang, H. Low, W.S. Chin, Chem. Mater. 18, 6170–6177 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Ratanatawanate, A. Bui, K. Vu, K.J. Balkus, J. Phys. Chem. C 115, 6175–6180 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Erokhina, V. Erokhin, C. Nicolini, F. Sbrana, D. Ricci, E.D. Zitti, Langmuir 19, 766–771 (2003)CrossRefGoogle Scholar
  24. 24.
    S. Gorai, D. Ganguli, S. Chaudhuri, Cryst. Growth Des. 5, 875–877 (2005)CrossRefGoogle Scholar
  25. 25.
    A.O. Mills, C. Rourke, K. Moore, J. Photochem. Photobiol. A 310, 66–105 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, G. Wu, X. Chen, Mater. Chem. Phys. 98, 298–303 (2006)CrossRefGoogle Scholar
  27. 27.
    Q. Wang, J. Li, G. Li, X. Cao, K.J. Wang, J. Chen, J. Cryst. Growth 299, 386–392 (2007)CrossRefGoogle Scholar
  28. 28.
    B. Li, Y. Xie, Y. Xue, J. Phys. Chem. C 111, 12181–12187 (2007)CrossRefGoogle Scholar
  29. 29.
    A. Dutta, S.K. Dolui, Mater. Chem. Phys. 112, 448–452 (2008)CrossRefGoogle Scholar
  30. 30.
    T. Thongtem, A. Phuruangrat, S. Thongtem, Curr. Appl. Phys. 9, 195–200 (2009)CrossRefGoogle Scholar
  31. 31.
    C. Wu, J. Shi, C. Chen, Y. Chen, Y. Lin, P. Wu, S. Wei, Mater. Lett. 62, 1074–1077 (2008)CrossRefGoogle Scholar
  32. 32.
    P. Kar, S. Farsinezhad, X. Zhang, K. Shankar, Nanoscale 23, 14305–14318 (2014)CrossRefGoogle Scholar
  33. 33.
    C. Tan, R. Lu, P. Xue, C. Bao, Y. Zhao, Mater. Chem. Phys. 112, 500–503 (2008)CrossRefGoogle Scholar
  34. 34.
    P. Roy, S.K. Srivastava, Mater. Lett. 61, 1693–1697 (2007)CrossRefGoogle Scholar
  35. 35.
    L. Zhu, Y. Xie, X. Zheng, X. Liu, G. Zhou, J. Cryst. Growth 260, 494–499 (2004)CrossRefGoogle Scholar
  36. 36.
    Y. Zhu, X. Guo, J. Jin, Y. Shen, X. Guo, W. Ding, J. Mater. Sci. 42, 1042–1045 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Nafees, S. Ali, S. Idrees, Appl. Nanosci. 3, 119–124 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Bai, X. Jiang, Anal. Chem. 85, 8095–8101 (2013)CrossRefGoogle Scholar
  39. 39.
    K. Krishnamoorthy, G.K. Veerasubraman, A.N. Rao, J.K. Sang, Mater. Res. Express 1, 035006 (2014)CrossRefGoogle Scholar
  40. 40.
    M.N.V.R. Kumar, React. Funct. Polym. 46, 1–27 (2000)CrossRefGoogle Scholar
  41. 41.
    V.C. Nguyen, N.L.G. Nguyen, Q.H. Pho, Adv. Nat. Sci. 6, 035001 (2015)Google Scholar
  42. 42.
    S. Qin, Y. Liu, Y. Zhou, T. Chai, J. Guo, J. Mater. Sci. 28, 7609–7614 (2017)Google Scholar
  43. 43.
    P. Dharmarajan, A. Sabsatiyan, M. Suvaikin, S. Titusb, C. Muthukumar, Chem. Sci Trans. 2, 1450–1458 (2013)Google Scholar
  44. 44.
    V.K. Gupta, T.A. Saleh, D. Pathania, B.S. Rathore, G. Sharma, Ionics 21, 1787–1793 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Rasul, R. Brown, M. Hashib, J. Environ. Manag. 92(3)), 311–330 (2011)Google Scholar
  46. 46.
    E. Saggioro, A. Olivera, Th Pavesi, C. Maia, L. Ferreira, C. Moreira, Molecules 16, 10370–10386 (2011)CrossRefGoogle Scholar
  47. 47.
    K.R. Nemade, S.A. Waghuley, Mater. Sci. Semiconduct. Process. 39, 781–785 (2015)CrossRefGoogle Scholar
  48. 48.
    L.N. Dlamini, R.W. Krause, G.U. Kulkarni, S.H. Durbach, Mater. Chem. Phys. 129, 406–410 (2011)CrossRefGoogle Scholar
  49. 49.
    M. Dinari, M.M. Momeni, Y. Ghayeb, J. Mater. Sci. 27, 9861–9869 (2016)Google Scholar
  50. 50.
    A.N. Kadam, R.S. Dhabbe, M.R. Kokate, N.L. Gavade, P.R. Waghmare, K.M. Garadkar, J. Mater. Sci. 26, 8367–8379 (2015)Google Scholar
  51. 51.
    N. Bouanimba, R. Zouaghi, N. Laid, T. Sehili, Desalination 275, 244–233 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Khan, A.K. Khalil, A. Khan, K. Saeed, N. Ali, Korean J. Chem. Eng. 33, 2802–2807 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Haider, N. Bukhari, S.Y. Park, Y. Iqbal, W.A. Al-Masry, Chem. Eng. Res. Des. 89, 23–34 (2011)CrossRefGoogle Scholar
  54. 54.
    A. Fujishima, X. Zhang, T. Comptes, Rendus. Chim. 9, 750–760 (2006)CrossRefGoogle Scholar
  55. 55.
    H. Lasa, B. Serrano, M. Salaices, Springer 10, 987–1007 (2005)Google Scholar
  56. 56.
    P.S. Mukherjee, A.K. Ray, Chem. Eng. Technol. 22, 253–260 (1999)CrossRefGoogle Scholar
  57. 57.
    S. Lam, J. Sin, A. Abdullah, A. Mohamed, Desalin. Water Treat. 41, 131–169 (2012)CrossRefGoogle Scholar
  58. 58.
    S.A. Djepang, S. Laminsi, E. Njoyim-Tamungang, C. Ngnintendem, J.-L. Brisset, Chem. Mater. Eng. 2, 14–25 (2014)Google Scholar
  59. 59.
    A.B. Lavand, M.N. Bhatu, Y.S. Malghe, J. Mater. Res. Technol. (2018).  https://doi.org/10.1016/j.jmrt.2017.05.019 Google Scholar
  60. 60.
    V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, J. Ind. Eng. Chem. 21, 957–964 (2015)CrossRefGoogle Scholar
  61. 61.
    W. Bai, R. Yao, X. Tian, M. Guan, N. Lai, Q. Chen, Y. Xu, J. Lin, J. Taiwan Inst. Chem. Eng. 87, 112–116 (2018)CrossRefGoogle Scholar
  62. 62.
    G. Sharma, V.K. Gupta, S. Agarwal, A. Kumar, S. Thakur, D. Pathania, J. Mol. Liq. 219, 1137–1143 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adnan Khan
    • 1
    Email author
  • Syed Jamal Shah
    • 1
  • Karishma Mehmood
    • 1
  • Awais
    • 1
  • Nauman Ali
    • 1
  • Hamayun Khan
    • 2
  1. 1.Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
  2. 2.Department of ChemistryIslamia CollegePeshawarPakistan

Personalised recommendations