Effect of cadmium precursor on the physico-chemical properties of electrochemically-grown CdS thin films for optoelectronic devices application: a comparative study

  • O. K. EchenduEmail author
  • S. Z. Werta
  • F. B. Dejene


Thin film CdS materials for possible optoelectronic devices application have been synthesized by the electrochemical deposition method, using two different cadmium salts and sodium thiosulphate as precursors. In order to keep the synthesis process as simple as possible, no additional chemicals were added as complexing agents or buffers, and a two-electrode set-up was used. The qualities of the resulting films from the different cadmium precursors were compared by characterizing them for their physico-chemical properties using state-of-the-art glancing incidence X-ray diffraction, UV–Vis spectrophotometry, scanning electron microscopy and energy dispersive X-ray spectroscopy (EDX). The results obtained show significant influence of cadmium precursor on the structural, optical and chemical properties of the films. Whereas CdCl2 precursor produced CdS with purely hexagonal structure in both as-grown and heat-treated conditions, Cd(CH3COO)2 produced CdS with purely cubic crystal structure, with films from both precursors showing clear difference in physical appearance. Energy bandgap values estimated for the films are in the range (2.49–2.57) eV and (2.22–2.23) eV in as-deposited form, with CdCl2 and Cd(CH3COO)2 precursors respectively. After annealing, these values become 2.42 eV with CdCl2 and (2.30–2.31) eV with Cd(CH3COO)2. Although CdS from both precursors show similar surface morphology, EDX results reveal that CdS films from CdCl2 precursor are more stoichiometric with Cd/S atomic ratios of (0.90–0.93) compared to films from Cd(CH3COO)2 precursor with Cd/S values of (0.87–0.88).



Authors thank the University of the Free State for financial assistance. O. K. Echendu is grateful to the Federal University of Technology, Owerri, Nigeria for support.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    I.A. Kirovskaya, O.T. Timoshenko, E.O. Karpova, The catalytic and photocatalytic properties of InP-CdS and ZnTe-CdS system components. Russ. J. Phys. Chem. A 85(4), 557 (2011)CrossRefGoogle Scholar
  2. 2.
    S.K. Tripathi, R.K. Jyoti, Investigation of non-linear optical properties of CdS/PS polymer nanocomposite synthesized by chemical route. Opt. Commun. 352, 55 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Li, W. Ren, R. Wu, M. Zhang, CeO2 enhanced ethanol sensing performance in a CdS gas sensor. Sensors 17, 1577 (2017). CrossRefGoogle Scholar
  4. 4.
    X. Wang, X. He, H. Zhu, L. Sun, W. Fu, X. Wang, L.C. Hoong, H. Wang, Q. Zeng, W. Zhao, J. Wei, Z. Jin, Z. Shen, J. Liu, T. Zhang, Z. Liu, Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2(7), 1 (2016)CrossRefGoogle Scholar
  5. 5.
    A.K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, I.D.W. Samuel, Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J. Phys. Chem. C 120, 1871 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Kraftmankher, Experiments on photoconductivity. Eur. J. Phys. 33, 503 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Gaewdang, N. Wongcharoen, Heterojunction properties of p-CuO/n-CdS diode. Adv. Mater. Res. 1098, 1 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H.J. Stiegler, M.A. Quevedo-Lopez, R.J. Pieper, B.E. Gnade, CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Walker, G. Kim, J. Heo, G.J. Chae, J. Park, J.H. Seo, J.Y. Kim, Solution-processed CdS transistors with high electron mobility. RSC Adv. 4, 3153 (2014)CrossRefGoogle Scholar
  10. 10.
    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10 (2016)CrossRefGoogle Scholar
  11. 11.
    W.K. Metzger, The potential and device physics of interdigitated thin film solar cells. J. Appl. Phys. 103, 094515-1 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. 52, 247 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Kim, A. Ochirbat, H.J. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31, 7609 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Naghavi, G. Renou, V. Bockelee, F. Donsanti, P. Genevee, M. Jubault, J.F. Guillemoles, D. Lincot, Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: role of window layers. Thin Solid Films 519(21), 7600 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Cui, X. Liu, L. Sun, F. Liu, C. Yan, X. Hao, Fabrication of efficient Cu2ZnSnS4 solar cells by sputtering single stoichiometric target. Coatings 7, 19 (2017). CrossRefGoogle Scholar
  16. 16.
    T.P. Dhakal, C. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23 (2014)CrossRefGoogle Scholar
  17. 17.
    O.K. Echendu, F. Fauzi, A.R. Weerasinghe, I.M. Dharmadasa, High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors. Thin Solid Films 556, 529 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Boieriu, R. Sporken, Y. Xin, N.D. Browning, S. Sivananthan, Wurtzite CdS on CdTe grown by molecular beam epitaxy. J. Electron. Mater. 29(6), 718 (2000)CrossRefGoogle Scholar
  19. 19.
    N.R. Paudel, K.A. Wieland, A.D. Compaan, Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 105, 109 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Avila-Avendano, I. Mejia, H.N. Alshareef, Z. Guo, C. Young, M. Quevedo-Lopez, In-situ CdS/CdTe heterojuntions deposited by pulsed laser deposition. Thin Solid Films 608, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Schaffner, E. Feldmeier, A. Swirschuk, H.J. Schimper, A. Klein, W. Jaegermann, Influence of substrate temperature, growth rate and TCO substrate on the properties of CSS-deposited CdS thin films. Thin Solid Films 519, 7556 (2011)CrossRefGoogle Scholar
  22. 22.
    N. Memarian, S.M. Rozati, I. Concina, A. Vomiero, Deposition of nanostructured CdS thin films by thermal evaporation method: effect of substrate temperature. Materials 10, 773 (2017). CrossRefGoogle Scholar
  23. 23.
    A. Kerimova, E. Bagiyev, E. Aliyeva, A. Bayramov, Nanostructured CdS thin films deposited by spray pyrolysis method. Phys. Status Solidi C 1600144, 1 (2017)Google Scholar
  24. 24.
    Z. Lu, R. Jin, Y. Liu, L. Guo, X. Liu, J. Liu, K. Cheng, Z. Du, Optimization of chemical bath deposited cadmium sulfide buffer layer for high-efficient CIGS thin film solar cells. Mater. Lett. 204, 53 (2017)CrossRefGoogle Scholar
  25. 25.
    A.A. Ziabari, F.E. Ghodsi, Growth, characterization and studying of sol-gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: effect of post-growth heat treatment. Sol. Energy Mater. Sol. Cells 105, 249 (2012)CrossRefGoogle Scholar
  26. 26.
    O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, F.C. Eze, Characteristics of nanocrystallite-CdS produced by low-cost electrochemical technique for thin film photovoltaic application: the influence of deposition voltage, Int. J. Photoenergy.
  27. 27.
    O.K. Echendu, I.M. Dharmadasa, The effect on CdS/CdTe solar cell conversion efficiency of the presence of fluorine in the usual CdCl2 treatment of CdTe. Mater. Chem. Phys. 157, 39 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources. Thin Solid Films 516, 7306 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Nakanishi, K. Ito, Properties of chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 35, 171 (1994)CrossRefGoogle Scholar
  30. 30.
    M. Rami, E. Benamar, M. Fahoume, F. Chraibi, A. Ennaoui, Effect of the cadmium ion source on the structural and optical properties of chemical bath deposited CdS thin films. Solid State Sci. 1, 179 (1999)CrossRefGoogle Scholar
  31. 31.
    D. Cunningham, M. Ribcich, D. Skinner, Cadmium telluride PV module manufacturing at BP solar. Prog. Photovolt. 10, 159 (2002)CrossRefGoogle Scholar
  32. 32.
    O.K. Echendu, I.M. Dharmadasa, Graded-bandgap solar cells using all- electrodeposited ZnS, CdS and CdTe thin-films. Energies 8, 4416 (2015)CrossRefGoogle Scholar
  33. 33.
    I.M. Dharmadasa, O.K. Echendu, Electrodeposition of electronic materials for applications in macroelectronic and nanotechnology based devices, in Encyclopedia of Applied Electrochemistry, ed. by R. Savinell, K. Ota, G. Kreysa (Springer, Berlin, 2013)Google Scholar
  34. 34.
    P.M.P. Salomé, J. Keller, T. Törndahl, J.P. Teixeira, N. Nicoara, R. Andrade, D.G. Stroppa, J.C. González, M. Edoff, J.P. Leitão, S. Sadewasser, CdS and Zn1–xSnxOy buffer layers for CIGS solar cells. Sol. Energy Mater. Sol. Cells 159, 272 (2017)CrossRefGoogle Scholar
  35. 35.
    D.H. Rose, F.S. Hasoon, R.G. Dhere, D.S. Albin, R.M. Ribelin, X.S. Li, Y. Mahathongdy, T.A. Gessert, P. Sheldon, Fabrication procedures and process sensitivities for CdS/CdTe solar cells. Prog. Photovolt. 7, 331 (1999)CrossRefGoogle Scholar
  36. 36.
    R.N. Bhattacharya, W. Batchelor, J.F. Hiltner, J.R. Sites, Thin-film CuIn1–xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl. Phys. Lett. 75, 1431 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Solar Energy Materials, Sensors and Luminescence Materials Group, Department of Physics (Qwaqwa Campus)University of the Free StatePhuthaditjhabaSouth Africa

Personalised recommendations