Preparation and optical characterization of PbWO4 nanocrystals from mechanical alloying process

  • Debesh Devadutta MishraEmail author
  • Ke Li
  • Guolong TanEmail author


This study presents the fabrication of PbWO4 nanoparticles using PbO and WO3 of designed molar ratio as the starting materials by mechanical alloying in atmospheric conditions. The impact energy of the SPEX ball milling machine provided the energy difference to form the PbWO4 through the mechanochemical process. The milled nanocrystals showcase single-phase product with particle sizes in the range of 3–10 nm. The UV–Vis-NIR spectra provide the direct band gap of 3.82 eV.



The authors acknowledge the financial support from the Open Fund of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) under the contract No. 2016-KF-15, National Science Foundation of China under the contract of 21476179.

Compliance with ethical standards

Conflict of interest

There is no conflict within the authors for the submission.


  1. 1.
    C.X. Burda, C.R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Iraj, F.D. Nayeri, E. Asl-Soleimani, K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye- sensitized solar cells. J. Alloys Compd. 659, 44–50 (2016)CrossRefGoogle Scholar
  3. 3.
    S.B. Cui, Y.S. Zhu, W. Xu, P.W. Zhou, L. Xia, X. Chen, H. Song, W. Han, Self-assembly and modified luminescence properties of NaY(MoO4)2:Tb3+, Eu3+ inverse opals. Dalton Trans. 43, e13293–e13298 (2014)Google Scholar
  4. 4.
    X. Jiang, J. Ma, J. Liu, Y. Ren, B. Lin, J. Tao, X. Zhu, Synthesis of ZnWO4 nano-particles by a molten salt method. Mater. Lett. 61, 4595–4598 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Kalinko, A. Kuzmin, Raman and photoluminescence spectroscopy of zinc tungstate powders. J. Lumin. 129, 1144–1147 (2009)CrossRefGoogle Scholar
  6. 6.
    S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.H. Li, J.M. Hong, Z. Xue, X.Z. You, Fabrication of nano- crystalline ZnWO4 with different morphologies and sizes via hydrothermal route. Chem. Phys. Lett. 375, 185–190 (2003)CrossRefGoogle Scholar
  7. 7.
    S.W. Liu, J.G. Yu, M. Jaroniec, Anatase TiO2 with dominant high-energy 001 facets: synthesis, properties, and applications. Chem. Mater. 23, 4085–4093 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Kong, Y.Z. Li, X. Chen, T.T. Tian, P.F. Fang, F. Zheng, X.J. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133, 16414–16417 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Hoang, S.W. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 12, 26–32 (2012)CrossRefGoogle Scholar
  10. 10.
    T.D. Bui, A. Kimura, S. Ikeda, M. Matsumura, Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J. Am. Chem. Soc. 132, 8453–8458 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen, H.J. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701–705 (2010)CrossRefGoogle Scholar
  12. 12.
    S.W. Liu, J.G. Yu, Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers. J. Solid State Chem. 181, 1048–1055 (2008)CrossRefGoogle Scholar
  13. 13.
    I. Tsuji, H. Kato, A. Kudo, Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid-solution photocatalyst. Angew. Chem. Int. Ed. 44, 3565–3568 (2005)CrossRefGoogle Scholar
  14. 14.
    L.Z. Zhang, I. Djerdj, M.H. Cao, M. Antonietti, M. Niederberger, Nonaqueous sol–gel synthesis of a nano-crystalline InNbO4 visible-light photocatalyst. Adv. Mater. 19, 2083–2086 (2007)CrossRefGoogle Scholar
  15. 15.
    Y.F. Sun, Y. Xie, C.Z. Wu, S.D. Zhang, S.S. Jiang, Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature. Nano Res. 3, 620–631 (2010)CrossRefGoogle Scholar
  16. 16.
    J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 43, 4463–4467 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Hara, M. Ishii, M. Kobayashi, M. Nikl, H. Takano, M. Tanaka, K. Tanji, Y. Usuki, La-doped PbWO4 scintillating crystals grown in large ingots. Nucl. Instrum. Methods Phys. Res. A 414, 325–331 (1998)CrossRefGoogle Scholar
  18. 18.
    M. Kobayashi, M. Ishii, Y. Usuki, Comparison of radiation damage in different PbWO4 scintillating crystals. Nucl. Instrum. Methods Phys. Res. A 406, 442–450 (1998)CrossRefGoogle Scholar
  19. 19.
    P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M. Korzhik, Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. J. Nucl. Instrum. Meth. Phys. A 365, 291–298 (1995)CrossRefGoogle Scholar
  20. 20.
    F. Lei, B. Yan, H.H. Chen, Q. Zhang, J.T. Zhao, Surfactant-assisted hydrothermal synthesis, physical characterization, and photoluminescence of PbWO4. Cryst. Growth Des. 9, 3730–3736 (2009)CrossRefGoogle Scholar
  21. 21.
    T. George, S. Joseph, A.T. Sunny, S. Mathew, Fascinating morphologies of lead tungstate nanostructures by chimiedouce approach. J. Nanopart. Res. 10, 567–575 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Tang, Q. Wu, X. Yang, B. Yang, C. Li, Surfactant-assisted synthesis of novel star-like PbWO4 hierarchical architectures. Cryst. Res. Technol. 45, 1094–1098 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Phuruangrat, T. Thongtem, S. Thongtem, Analysis of lead molybdate and lead tungstate synthesized by a sonochemical method. Curr. Appl. Phys. 10, 342–345 (2010)CrossRefGoogle Scholar
  24. 24.
    P. Kwolek, T. Tokarski, T. Lokcik, K. Szacilowski, Novel, microwave assisted route of synthesis of binary oxide semiconducting phases—PbMoO4 and PbWO4. Arch. Metall. Mater. 58, 217–222 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Phuruangrat, T. Thongtem, S. Thongtem, Molybdate and lead tungstate via microwave irradiation method. J. Cryst. Growth 311, 4076–4081 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Geng, Y. Lv, D. Lu, J.J. Zhu, Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures. Nanotechnology 17, 2614–2620 (2006)CrossRefGoogle Scholar
  27. 27.
    X. He, M. Cao, Synthesis and characterization of PbCrO4 and PbWO4 nanorods. Nanotechnology 17, 3139–3143 (2006)CrossRefGoogle Scholar
  28. 28.
    L.S. Cavalcante, J.C. Sczancoski, V.C. Albarici, J.M.E. Matos, J.A. Varela, E. Longo, Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Mater. Sci. Eng. B 150, 18–25 (2008)CrossRefGoogle Scholar
  29. 29.
    X. Yang, J. Huang, Phase transformation of lead tungstate at normal temperature from tetragonal structure to monoclinic structure. J. Am. Ceram. Soc. 95, 3334–3338 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Geng, J.J. Zhu, D.J. Lu, H.Y. Chen, Hollow PbWO4 nanospindles via a facile sonochemical route. Inorg. Chem. 45, 8403–8407 (2006)CrossRefGoogle Scholar
  31. 31.
    H. Tang, C. Li, H. Song, X. Yang, X. Yan, Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO4 microstructures. CrystEngComm 13, 5119–5124 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Chen, Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J. 219, 86–95 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Xiong, B. Wang, H. Zhuang, X. Jiang, G. Ma, Y. Yi, W. Hu, Y. Zhou, Doping-induced evolutions of PbWO4 mesocrystals and their optical properties. RSC Adv. 4, 36738–36741 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, L. Yang, Y. Wang, X. Wang, G. Han, Controlled synthesis of PbWO4 dendrites by a simple sonochemical method. J. Alloys Compd. 554, 86–88 (2013)CrossRefGoogle Scholar
  35. 35.
    X. Wang, B. Liu, Y. Yang, Luminescence properties of PbWO4:Eu3+ nanocrystals synthesized by a hydrothermal method. Opt. Laser Technol. 58, 84–88 (2014)CrossRefGoogle Scholar
  36. 36.
    X. Guo, J. Yang, Y. Deng, H. Wei, D. Zhao, Hydrothermal synthesis and photoluminescence of hierarchical lead tungstate superstructures: effects of reaction temperature and surfactants. Eur. J. Inorg. Chem. 2010, 1736–1742 (2010)CrossRefGoogle Scholar
  37. 37.
    J. Lin, M. Yu, C. Lin, X. Liu, Multiform oxide optical materials via the versatile pechini-type sol–gel process: synthesis and characteristics. J. Phys. Chem. C 111, 5835–5845 (2007)CrossRefGoogle Scholar
  38. 38.
    D.D. Mishra, V.V. Dabhade, V. Agarwala, R.C. Agarwala, Effect of Al particle size on the reaction kinetics and densification of TiAl intermetallics. J. Phase Trans. 87(4), 344–356 (2014)CrossRefGoogle Scholar
  39. 39.
    C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013)CrossRefGoogle Scholar
  40. 40.
    G.L. Tan, X.J. Wu, M.H. Zhao, H.F. Zhang, Synthesis of nanocrystalline cubic substoichiometric WC1–z powders by mechanochemical technology. J. Mater. Sci. 35, 3151–3154 (2000)CrossRefGoogle Scholar
  41. 41.
    C.S. Pathak, D.D. Mishra, V. Agarwala, M.K. Mandal, Blue light emission from barium doped zinc sulfide nanoparticles”. Ceram. Int. 38, 5497–5500 (2012)CrossRefGoogle Scholar
  42. 42.
    D.D. Mishra, V. Agarwala, R.C. Agarwala, Sintering behavior of mechanically alloyed Ti-48Al-2Nb aluminides. High Temp. 52(1), 65–71 (2014)CrossRefGoogle Scholar
  43. 43.
    C.S. Pathak, D.D. Mishra, V. Agarawala, M.K. Mandal, Mechanochemical synthesis, characterization and optical properties of zinc sulphide nanoparticles. Indian J. Phys. 86(9), 777–781 (2012)CrossRefGoogle Scholar
  44. 44.
    C.S. Pathak, D.D. Mishra, V. Agarwala, M.K. Mandal, Optical properties of ZnS nanoparticles prepared by high energy ball milling. Mater. Sci. Semicond. Proc. 16, 525–529 (2013)CrossRefGoogle Scholar
  45. 45.
    F.M. Pontes, M.A.M.A. Maurera, A.G. Souza, E. Longo, E.R. Leite, R. Magnani, M.A.C. Machado, P.S. Pizani, J.A. Varela, Preparation, structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route. J. Eur. Ceram. Soc. 23(16), 3001–3007 (2003)CrossRefGoogle Scholar
  46. 46.
    C.H. An, K.B. Tang, G.Z. Shen, Hydrothermal preparation of luminescent PbWO4 nanocrystallites. J. Mater. Lett. 57, 565–568 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations